Concept explainers
Interpretation:
Lone pair of electrons present on nitrogen atom in the given structure has to be drawn.
Concept Introduction:
Lone pair of electrons are the pair of valence electrons that are not involved in bonding with other atoms. These are also called as non-bonding pair. Formal charge and lone pair of electrons are more important in representing a correct structure. If we know the formal charge on an atom, the lone pair of electrons can be found and vice-versa. The simple convention is to ignore the lone pairs and always show the formal charge. To find the lone pair of electrons present on an atom, few steps has to be followed and they are listed below,
- Valence electron of an atom has to be found according to the periodic table.
- Formal charge on the atom has to be considered. Positive charge means one electron less and a negative charge means one electron is more.
- The difference between the valence electron and the formal charge gives the lone pair of electrons that is present.
If the compound contains nitrogen atom and there is no formal charge present on the nitrogen atom means it will have three bonds and one lone pair of electron.
If the nitrogen atom has a formal positive charge means, then the nitrogen atom will have four bonds and no lone pair of electrons.
If the nitrogen atom has a formal negative charge means, then the nitrogen atom will have two bonds and two lone pair of electrons.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Organic Chemistry As a Second Language: First Semester Topics
- Don't used Ai solutionarrow_forwardLet's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forward
- A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardThe number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY