Consider the following condition and find out the direction of the reaction (1) Q < K (2) Q > K (3) Q = K Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation. Equilibrium constant K c is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients. Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients. aA + bB→cC + dD K c = [ C ] c [ D ] d [ A ] a [ B ] b , equilibrium Q = [ C ] c [ D ] d [ A ] a [ B ] b To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.
Consider the following condition and find out the direction of the reaction (1) Q < K (2) Q > K (3) Q = K Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation. Equilibrium constant K c is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients. Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients. aA + bB→cC + dD K c = [ C ] c [ D ] d [ A ] a [ B ] b , equilibrium Q = [ C ] c [ D ] d [ A ] a [ B ] b To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.
Solution Summary: The author explains the direction of reaction shift at different values of the reaction quotient and the equilibrium constant.
Definition Definition Number that is expressed before molecules, ions, and atoms such that it balances out the number of components present on either section of the equation in a chemical reaction. Stoichiometric coefficients can be a fraction or a whole number and are useful in determining the mole ratio among the reactants and products. In any equalized chemical equation, the number of components on either side of the equation will be the same.
Chapter 16, Problem 14E
Interpretation Introduction
Interpretation: Consider the following condition and find out the direction of the reaction
(1) Q < K
(2) Q > K
(3) Q = K
Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation.
Equilibrium constant Kc is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients.
Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients.
aA + bB→cC + dD
, equilibrium
To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.
For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check
the appropriate box.
Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below.
Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions
- just focus on the first stable product you expect to form in solution.
?
Will the first
MgBr
product that forms in this reaction
create a new CC bond?
olo
?
OH
جمله
O Yes
Ⓒ No
MgCl
?
Will the first product that forms in this reaction
create a new CC bond?
Click and drag to start drawing a
structure.
Yes
No
X
☐ :
☐
टे
PH
Assign all the protons
PROPOSE REACTION MECHANISM FOR ACID-CATALYZED REACTION OF 3-PENTANONE WITH DIMETHYLAMINE