
Electronics Fundamentals: Circuits, Devices & Applications
8th Edition
ISBN: 9780135072950
Author: Thomas L. Floyd, David Buchla
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 13P
To determine
To explain: The reason for using a series resistor in a forward biased diode circuit.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Design a counter to count-up from 2 to 7 using three of
D Flip Flops
(3) 3-Bit Count up (3 to 5) Using D Flip-Flop:
The State Equation of D Flip-Flop:
Q(t+1)=D(t) => Dn=Qn
Present State
D Flip-Flop
Next State
n
Q2p Q1p Q0p
3
0 1
1
1
Q2n Q1n Q0n D2 D1 D0
0 0 1 0 0
4
1
0
0
1
0
1
1 0
1
5
1 0
1
0
1
1
01
1
D2-Sum(3,4) and don't care X-Sum(0,1,2,6,7)
D1=Sum(5) and don't care X=Sum(0,1,2,6,7)
D0=Sum(4,5) and don't care X=Sum(0,1,2,6,7)
Using K-map to simplify the functions:
D2=Q1+Q0'
D1=Q1'QO
DO=Q1'
XOX
XOX
Q2 10
Q2 01
Q2 1xx
Q0
QO
Qo
D2 Q2
>CK
Q2
D1 Q1
BCD
CK
Q1
DO QF
►CK
Q0
☐ Present State Next State D Flip-Flop
n Q2p Q1p Q0p Q2n Q1n Q0n D2 D1 D0
2 0 1
0
0 1 1 0 1 1
3 0
1
1
1
0
0 1 00
4
1
0
0
1
0
1
1
0
1
5
1
0
1
1
1
0
1 1
0
6
1
1
0
0
1
0
0
1
0
D2
D2=Sum(3,4,5), X=Sum(0,1,7)
D1
Q2
1
Q1
1
0
☑
0
Qo
D2=Q0+Q1'
✗
0
Q1
Consider the following 4×1 multiplexer with inputs:
w0=2, w1=1, w2=x2' and w3=0
And with switches:
S1 x1 and S0=x0
What is the multiplexer output f as a function of x2, x1
and x0?
I need help adding a capacitor and a Zener diode to my circuit. I’m looking for a simple sketch or diagram showing how to connect them. i want diagram with final circuit after adding the zener diad and capacitor. don't do calclution or anything. thanks
Chapter 16 Solutions
Electronics Fundamentals: Circuits, Devices & Applications
Ch. 16 - Silicon can be doped with a trivalent material...Ch. 16 - The minority carriers in an n-type material are...Ch. 16 - Before a diode fully conducts, the bias must...Ch. 16 - When forward bias is applied to a diode, the...Ch. 16 - The output frequency from a full-wave rectifier is...Ch. 16 - The peak output voltage of a full-wave bridge...Ch. 16 - If one diode is open in a bridge rectifier, the...Ch. 16 - Line regulation specifies how much change occurs...Ch. 16 - Normally, zener diodes, varactor diodes, and...Ch. 16 - Prob. 10TFQ
Ch. 16 - Â Atoms within a semiconductor crystal arc held...Ch. 16 - Free electrons exist in the valence band...Ch. 16 - Prob. 3STCh. 16 - The process of adding impurity atoms to a pure...Ch. 16 - Prob. 5STCh. 16 - The majority carriers in an n-type semiconductor...Ch. 16 - The pn junction is found in diodes silicon all...Ch. 16 - Prob. 8STCh. 16 - A fixed dc voltage that sets the operating...Ch. 16 - Prob. 10STCh. 16 - When a diode is forward-biased, it is blocking...Ch. 16 - Prob. 12STCh. 16 - The process of converting ac to pulsating dc is...Ch. 16 - Prob. 14STCh. 16 - The number of diodes used in a half-wave rectifier...Ch. 16 - If a 75 V peak sine wave is applied to a half-wave...Ch. 16 - The output frequency of a full-wave rectifier with...Ch. 16 - Two types of full-wave rectifier are single diode...Ch. 16 - When a diode in a center-tapped rectifier opens,...Ch. 16 - During the positive half-cycle of the input...Ch. 16 - The process of changing a half-wave or a full-wave...Ch. 16 - Prob. 22STCh. 16 - The zener diode is designed to operate in zener...Ch. 16 - Zener diodes are sometimes used as current...Ch. 16 - Varactor diodes are used as variable resistors...Ch. 16 - Prob. 26STCh. 16 - In a photodiode, light produces reverse current...Ch. 16 - List two semiconductive materials.Ch. 16 - How many valence electrons do semiconductors have?Ch. 16 - In a silicon crystal, how many covalent bonds does...Ch. 16 - What happens when heat is added to silicon?Ch. 16 - Name the two energy levels at which current is...Ch. 16 - Describe the process of doping and explain how it...Ch. 16 - What type of impurity is antimony? What type of...Ch. 16 - Explain what a hole is.Ch. 16 - What is recombination?Ch. 16 - How is the electric field across the pn junction...Ch. 16 - Because of its barrier potential, can a diode be...Ch. 16 - To forward-bias a diode, to which region must the...Ch. 16 - Prob. 13PCh. 16 - Explain how to generate the forward-bias portion...Ch. 16 - What would cause the barrier potential to decrease...Ch. 16 - Determine whether each diode in Figure 16-74 is...Ch. 16 - Determine the voltage across each diode in Figure...Ch. 16 - Examine the meter indications in each circuit of...Ch. 16 - Determine the voltage with respect to ground at...Ch. 16 - Calculate the average value of a half-wave...Ch. 16 - Prob. 21PCh. 16 - Can a diode with a PIV rating of 50 V be used in...Ch. 16 - Prob. 23PCh. 16 - Calculate the average value of a full-wave...Ch. 16 - Consider the circuit in Figure 16-79. What type of...Ch. 16 - Calculate the peak voltage rating of each half of...Ch. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - The ideal dc output voltage of a capacitor-input...Ch. 16 - Refer to Figure 16-80 and draw the waveforms VA...Ch. 16 - A certain voltage regulator has a no-load output...Ch. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - The VZ of a given zener diode changes 38 mV for a...Ch. 16 - Figure 16-81 is a curve of reverse voltage versus...Ch. 16 - Refer to Figure 16-81 and determine the value of...Ch. 16 - When the switch in Figure 16-82 is closed, will...Ch. 16 - Prob. 38PCh. 16 - From the meter readings in Figure 16-83, determine...Ch. 16 - Each part of Figure 16-84 shows oscilloscope...Ch. 16 - For each set of measured voltages at nodes 1 and 2...Ch. 16 - Determine the most likely failure in the circuit...Ch. 16 - Prob. 43PCh. 16 - Prob. 44PCh. 16 - Prob. 45PCh. 16 - Prob. 46PCh. 16 - Open file P16-47 and determine if there is a...Ch. 16 - Open file P16-48 and determine if there is a...Ch. 16 - Open file P16-49 and determine if there is a...Ch. 16 - Open file P16-50 and determine if there is a...Ch. 16 - Prob. 51PCh. 16 - Open file P16-52 and determine if there is a...
Knowledge Booster
Similar questions
- Question 3 AC Motor Drives [15]Calculate the instantaneous currents delivered by the inverter if the direct axiscurrent required at a particular instant is 8.66A and the quadrature current is5A. Derive all equations for the three currents.arrow_forwardA certain signal f(t) has the following PSD (assume 12 load): Sp (w) = new + 8(w) - 1.5) + (w + 1.5)] (a) What is the mean power in the bandwidth w≤2 rad/see? (b) What is the mean power in the bandwidth -1.9 to 0.99 rad/sec? Paress(w) dw 2ㅈ -arrow_forward(75 Marks) JA signal (t) is bond 7)(t)(t) and f(t), are band-limited to 1.2 kHz each. These signals are to be limited to 9.6 kHz, and three other signals transmitted by means of time-division multiplexing. Set up scheme for accomplishing this multiplexing requirement, with each signal sampled at its Nyquist rate. What must be the speed of the commutator (the output but ram-k bit/sec)? the minimum band width? (25 Marks)arrow_forward
- Draw the digital modulation outputs, ASK Amplitude Shift Keying) FSK (Frequency Shift Keying) and PSK (Phase Shift Keying). For baseband and carriet frequency as shown 101 wwwwwwwwwwww 010 BASESAND basband CARRIER Carralarrow_forwardplease show full working. I've included the solutionarrow_forwardcan you please show working and steps. The answer is 8kohms.arrow_forward
- PSD A certain signal f(t) has the following PSD (assume 12 load): | Sƒ(w) = π[e¯\w\ + 8(w − 2) + +8(w + 2)] (a) What is the mean power in the bandwidth w≤ 1 rad/sec? (b) What is the mean power in the bandwidth 0.99 to 1.01 rad/sec? (c) What is the mean power in the bandwidth 1.99 to 2.01 rad/sec? (d) What is the total mean power in (t)? Pav= + 2T SfLw) dw - SALW)arrow_forwardAn AM modulation waveform signal:- p(t)=(8+4 cos 1000πt + 4 cos 2000πt) cos 10000nt (a) Sketch the amplitude spectrum of p(t). (b) Find total power, sideband power and power efficiency. (c) Find the average power containing of each sideband.arrow_forwardCan you rewrite the solution because it is unclear? AM (+) = 8(1+ 0.5 cos 1000kt +0.5 ros 2000ks) = cos 10000 πt. 8 cos wat + 4 cos wit + 4 cos Wat coswet. -Jet jooort J11000 t = 4 e jqooort jgoort +4e + e +e j 12000rt. 12000 kt + e +e jooxt igoo t te (w) = 8ES(W- 100007) + 8IS (W-10000) USBarrow_forward
- Can you rewrite the solution because it is unclear? AM (+) = 8(1+0.5 cos 1000kt +0.5 ros 2000 thts) = cos 10000 πt. 8 cos wat + 4 cos wit + 4 cos Wat coswet. J4000 t j11000rt $14+) = 45 jqooort +4e + e + e j 12000rt. 12000 kt + e +e +e Le jsoort -; goon t te +e Dcw> = 885(W- 100007) + 8 IS (W-10000) - USBarrow_forwardCan you rewrite the solution because it is unclear? Q2 AM ①(+) = 8 (1+0.5 cos 1000πt +0.5 ros 2000kt) $4+) = 45 = *cos 10000 πt. 8 cos wat + 4 cosat + 4 cos Wat coswet. j1000016 +4e -j10000πt j11000Rt j gooort -j 9000 πt + e +e j sooort te +e J11000 t + e te j 12000rt. -J12000 kt + с = 8th S(W- 100007) + 8 IS (W-10000) <&(w) = USB -5-5 -4-5-4 b) Pc 2² = 64 PSB = 42 + 4 2 Pt Pc+ PSB = y = Pe c) Puss = PLSB = = 32 4² = 8 w 32+ 8 = × 100% = 140 (1)³×2×2 31 = 20% x 2 = 3w 302 USB 4.5 5 5.6 6 ms Ac = 4 mi = 0.5 mz Ac = 4 ५ M2 = =0.5arrow_forwardA. Draw the waveform for the following binary sequence using Bipolar RZ, Bipolar NRZ, and Manchester code. Data sequence= (00110100) B. In a binary PCM system, the output signal-to-quantization ratio is to be hold to a minimum of 50 dB. If the message is a single tone with fm-5 kHz. Determine: 1) The number of required levels, and the corresponding output signal-to-quantizing noise ratio. 2) Minimum required system bandwidth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
