Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 106GP
To determine
How far the obstacle should be moved to obtain the phase difference of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
79 O In Fig. 17-46, sound of wavelength 0.850 m is emitted
isotropically by point source S. Sound ray 1 extends directly to
detector D, at distance L = 10.0 m. Sound ray 2 extends to D via a
reflection (effectively, a "bouncing") of the sound at a flat surface.
That reflection occurs on a perpendicular bisector to the SD line,
at distance d from the line. Assume that the reflection shifts the
sound wave by 0.500A. For what least value of d (other than zero)
do the direct sound and the reflected soupd arrive at D (a) exactly
out of phase and (b) exactly in phase?
Ray 2
Ray 1
L.
2
Figure 17-46 Problem 79.
95 A continuous traveling wave with amplitude A is incident on
a boundary. The continuous reflection, with a smaller amplitude B,
travels back through the incoming wave. The resulting interference
pattern is displayed in Fig. 16-51. The standing wave ratio is
defined to be
A + B
А - В
SWR =
The reflection coefficient R
is the ratio of the power of
the reflected wave to the
Amax
Amin
Anax
power of the incoming wave
and is thus proportional to
the ratio (BIA). What is the
SWR for (a) total reflection
and (b) no reflection? (c) For SWR = 1.50, what is R expressed as a
percentage?
Figure 16-51 Problem 95.
95 A continuous traveling wave with amplitude A is incident on
a boundary. The continuous reflection, with a smaller amplitude B,
travels back through the incoming wave. The resulting interference
pattern is displayed in Fig. 16-51. The standing wave ratio is
defined to be
A + B
А — В
SWR
The reflection coefficient R
is the ratio of the power of
the reflected wave to the
Ana
Amin
Am
max
ах
power of the incoming wave
and is thus proportional to
the ratio (BIA). What is the
SWR for (a) total reflection
and (b) no reflection? (c) For SWR = 1.50, what is R expressed as a
percentage?
Figure 16-51 Problem 95.
Chapter 16 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 16.1 - Prob. 1AECh. 16.3 - If an increase of 3 dB means twice as intense,...Ch. 16.3 - Trumpet players. A trumpeter plays at a sound...Ch. 16.4 - Two strings have the same length and tension, but...Ch. 16.7 - Prob. 1GECh. 16.7 - How fast would a source have to approach an...Ch. 16 - What is the evidence that sound travels as a wave?Ch. 16 - What is the evidence that sound is a form of...Ch. 16 - Children sometimes play with a homemade telephone...Ch. 16 - When a sound wave passes from air into water, do...
Ch. 16 - What evidence can you give that the speed of sound...Ch. 16 - The voice of a person who has inhaled helium...Ch. 16 - What is the main reason the speed of sound in...Ch. 16 - Two tuning forks oscillate with the same...Ch. 16 - How will the air temperature in a room affect the...Ch. 16 - Explain how a lube might be used as a filler to...Ch. 16 - Prob. 11QCh. 16 - A noisy truck approaches you from behind a...Ch. 16 - Standing waves can he said to be due to...Ch. 16 - In Fig. 16-15, if the frequency of the speakers is...Ch. 16 - Traditional methods of protecting the hearing of...Ch. 16 - Consider the two waves shown in Fig. 1630. Each...Ch. 16 - Is there a Doppler shift if the source and...Ch. 16 - If a wind is blowing, will this alter the...Ch. 16 - Figure 1631 shows various positions of a child on...Ch. 16 - Approximately how many octaves are there in the...Ch. 16 - At a race track, you can estimate the speed of...Ch. 16 - (I) A hiker determines the length of a lake by...Ch. 16 - Prob. 2PCh. 16 - (I) (a) Calculate the wavelengths in air at 20C...Ch. 16 - (I) On a warm summer day (27C), it takes 4.70 s...Ch. 16 - (II) A motion sensor can accurately measure the...Ch. 16 - Prob. 6PCh. 16 - A stone is dropped from the top of a cliff. The...Ch. 16 - A person, with his ear to the ground, sees a huge...Ch. 16 - Prob. 9PCh. 16 - (I) The pressure amplitude of a sound wave in air...Ch. 16 - (I) What must be the pressure amplitude in a sound...Ch. 16 - (II) Write an expression that describes the...Ch. 16 - (II) The pressure variation in a sound wave is...Ch. 16 - What is the intensity of a sound at the pain level...Ch. 16 - (I) What is the sound level of a sound whose...Ch. 16 - (I) What are the lowest and highest frequencies...Ch. 16 - (II) Your auditory system can accommodate a huge...Ch. 16 - (II) You are trying to decide between two new...Ch. 16 - (II) At a painfully loud concert, a 120-dB sound...Ch. 16 - (II) If two firecrackers produce a sound level of...Ch. 16 - A person standing a certain distance from an...Ch. 16 - (II) A cassette player is said to have a...Ch. 16 - (II) (a) Estimate the power output of sound from a...Ch. 16 - (II) A 50-dB sound wave strikes an eardrum whose...Ch. 16 - Expensive amplifier A is rated at 250 W, while the...Ch. 16 - (II) At a rock concert, a dB meter registered...Ch. 16 - A fireworks shell explodes 100m above the ground,...Ch. 16 - If the amplitude of a sound wave is made 2.5 times...Ch. 16 - Two sound waves have equal displacement...Ch. 16 - What would be the sound level (in dB) of a sound...Ch. 16 - (a) Calculate the maximum displacement of air...Ch. 16 - A jet plane emits 5.0 105 J of sound energy per...Ch. 16 - What would you estimate for the length of a bass...Ch. 16 - The A string on a violin has a fundamental...Ch. 16 - An organ pipe is 124 cm long. Determine the...Ch. 16 - (a) What resonant frequency would you expect from,...Ch. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - An unfingered guitar string is 0.73m long and is...Ch. 16 - (II) (a) Determine the length of an open organ...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - (II) A particular organ pipe can resonate at 264...Ch. 16 - A uniform narrow tube 1.80m long is open at both...Ch. 16 - (II) A pipe in air at 23.0C is to be designed to...Ch. 16 - How many overtones are present within the audible...Ch. 16 - Prob. 49PCh. 16 - (II) In a quartz oscillator, used as a stable...Ch. 16 - The human car canal is approximately 2.5 cm long....Ch. 16 - (II) Approximately what are the intensities of the...Ch. 16 - A piano tuner hears one beat every 2.0s when...Ch. 16 - What is the beat frequency if middle C (262 Hz)...Ch. 16 - A guitar string produces 4 beats/s when sounded...Ch. 16 - (II) The two sources of sound in Fig. 1615 face...Ch. 16 - Prob. 57PCh. 16 - (II) Two loudspeakers are placed 3.00 m apart, as...Ch. 16 - Two piano strings are supposed to be vibrating at...Ch. 16 - A source emits sound of wavelengths 2.64 m and...Ch. 16 - (I)The predominant frequency of a certain fire...Ch. 16 - A bat at rest sends out ultrasonic sound waves at...Ch. 16 - (II) (a) Compare the shift in frequency if a...Ch. 16 - Two automobiles are equipped with the same single...Ch. 16 - A police car sounding a siren with a frequency of...Ch. 16 - (II) A bat flies toward a wall at a speed of 7.0...Ch. 16 - In one of the original Doppler experiments, a tuba...Ch. 16 - (II) If a speaker mounted on an automobile...Ch. 16 - A wave on the surface of the ocean with wavelength...Ch. 16 - A factory whistle emits sound of frequency 720 Hz....Ch. 16 - The Doppler effect using ultrasonic waves of...Ch. 16 - (II) An airplane travels at Mach 2.0 where the...Ch. 16 - A space probe enters the thin atmosphere of a...Ch. 16 - A meteorite traveling 8800 m/s strikes the ocean....Ch. 16 - Show that the angle a sonic boom makes with the...Ch. 16 - Prob. 76PCh. 16 - (II) A supersonic jet traveling at Mach 2.2 at an...Ch. 16 - A fish finder uses a sonar device that sends...Ch. 16 - A science museum has a display called a sewer pipe...Ch. 16 - A single mosquito 5.0 m from a person makes a...Ch. 16 - What is the resultant sound level when an 82-dB...Ch. 16 - The sound level 9.00 m from a loudspeaker, placed...Ch. 16 - A stereo amplifier is rated at 175 W output at...Ch. 16 - Workers around jet aircraft typically wear...Ch. 16 - In audio and communications systems, the gain, ,...Ch. 16 - For large concerts, loudspeakers are sometimes...Ch. 16 - Manufacturers typically offer a particular guitar...Ch. 16 - The high-E string on a guitar is fixed at both...Ch. 16 - Prob. 89GPCh. 16 - Prob. 90GPCh. 16 - Two identical tubes, each closed at one end, have...Ch. 16 - Prob. 92GPCh. 16 - The diameter D of a tube does affect the node at...Ch. 16 - A person hears a pure tone in the 500 to 1000-Hz...Ch. 16 - The frequency of a steam train whistle as it...Ch. 16 - Two trains emit 516-Hz whistles. One train is...Ch. 16 - Two loudspeakers are at opposite ends of a...Ch. 16 - Two open organ pipes, sounding together, produce a...Ch. 16 - A bat flies toward a moth at speed 7.5 m/s while...Ch. 16 - If the velocity of blood flow in the aorta is...Ch. 16 - A bat emits a series of high-frequency sound...Ch. 16 - Prob. 102GPCh. 16 - Two loudspeakers face each other at opposite ends...Ch. 16 - Prob. 104GPCh. 16 - The wake of a speedboat is 15 in a lake where the...Ch. 16 - Prob. 106GPCh. 16 - Prob. 107GPCh. 16 - Prob. 108GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave of a frequency of 2.00 kHz is produced by a string oscillating in the n=6 mode. The linear mass density of the string is =0.0065 kg/m and the length of the string is 1.50 m. What is the tension in the string?arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardIf a large housefly 3.0 m away from you makes a noise of 40.0 dB, what is the noise level of 1000 flies at that distance, assuming interference has a negligible effect?arrow_forward
- A string is fixed at both end. The mass of the string is 0.0090 kg and the length is 3.00 m. The string is under a tension of 200.00 N. The string is driven by a variable frequency source to produce standing waves on the string. Find the wavelengths and frequency of the first four modes of standing waves.arrow_forwardA string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardTwo sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forward
- Two sources as in phase and emit waves with =0.42 m. Determine whether constructive or destructive interference occurs at points whose distances from the two sources are (a) 0.84 and 0.42 m, (b) 0.21 and 0.42 m, (c) 1.26 and 0.42 m, (d) 1.87 and 1.45 m, (e) 0.63 and 0.84 m and (f) 1.47 and 1.26 m.arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forwardA bat sends of a sound wave 100 kHz and the sound waves travel through air at a speed of v=343 m/s. (a) If the maximum pressure difference is 1.30 Pa, what is a wave function that would model the sound wave, assuming the wave is sinusoidal? (Assume the phase shift is zero.) (b) What are the period and wavelength of the sound wave?arrow_forward
- Does a sound wave move faster in seawater or fresh water, if both the sea water and fresh water are at the same temperature and the sound wave moves near the surface? (w1000kgm3,s1030kgm3,Bw=2.15109Pa,Bs=2.34109Pa)arrow_forwardDuring a 4th of July celebration, an M80 firework explodes on the ground, producing a bright flash and a loud bang. The air temperature of the night air is TF=90.00F . Two observers see the flash and hear the bang. The first observer notes the time between the flash and the bang as 1.00 second. The second observer notes the difference as 3.00 seconds. The line of sight between the two observers meet at a right angle as shown below. What is the distance x between the two observers?arrow_forwardAn 8-hour exposure to a sound intensity level of 90.0 dB may cause hearing damage. What energy in joules falls on a 0.800-cm-diameter eardrum so exposed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning