Concept explainers
(a)
Interpretation:
The hydrogen ion concentration and pH of given solutions of strong acids should be calculated.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
Here,
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
Here,
pH and pOH of a solution are related to each other as follows:
Answer to Problem 104AP
The hydrogen ion concentration is
Explanation of Solution
Given Information:
The concentration of strong acid,
Calculation:
The dissociation reaction of the acid is as follows:
Thus, if the concentration of
From the hydrogen ion concentration, pH can be calculated as follows:
Putting the value,
Thus, the hydrogen ion concentration is
(b)
Interpretation:
The hydrogen ion concentration and pH of given solutions of strong acids should be calculated.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
Here,
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
Here,
pH and pOH of a solution are related to each other as follows:
Answer to Problem 104AP
The hydrogen ion concentration is
Explanation of Solution
Given Information:
The concentration of strong acid,
Calculation:
The dissociation reaction of the acid is as follows:
Thus, if the concentration of HCl is
From the hydrogen ion concentration, pH can be calculated as follows:
Putting the value,
Thus, the hydrogen ion concentration is
(c)
Interpretation:
The hydrogen ion concentration and pH of given solutions of strong acids should be calculated.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
Here,
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
Here,
pH and pOH of a solution are related to each other as follows:
Answer to Problem 104AP
The hydrogen ion concentration is
Explanation of Solution
Given Information:
The concentration of strong acid,
Calculation:
The dissociation reaction of the acid is as follows:
Thus, if the concentration of
From the hydrogen ion concentration, pH can be calculated as follows:
Putting the value,
Thus, the hydrogen ion concentration is
(d)
Interpretation:
The hydrogen ion concentration and pH of given solutions of strong acids should be calculated.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
Here,
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
Here,
pH and pOH of a solution are related to each other as follows:
Answer to Problem 104AP
The hydrogen ion concentration is
Explanation of Solution
Given Information:
The concentration of strong acid,
Calculation:
The dissociation reaction of the acid is as follows:
Thus, if the concentration of HCl is
From the hydrogen ion concentration, pH can be calculated as follows:
Putting the value,
Thus, the hydrogen ion concentration is
Want to see more full solutions like this?
Chapter 16 Solutions
Introductory Chemistry: A Foundation
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Pheromone G of the maize stalk borer, chilo partelus, can be synthesized based on the partial scheme shown below. Complete the scheme by identifying the structures of the intermediate compounds A, B, C, D, E, F and pheromone G. Indicate stereochemistry where relevantarrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forward
- Complete the following reaction by identifying the principle organic product of the reactionarrow_forwardDenote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning