![Bundle: Organic Chemistry, 9th, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781305701021/9781305701021_largeCoverImage.gif)
Concept explainers
Propose structures for
(a) C9H12; gives only one C9H11Br product on substitution of a hydrogen on the aromatic ring with bromine
(b) C10H14; gives only one C10H13Cl product on substitution of a hydrogen on the aromatic ring with chlorine
(c) C8H10; gives three C8H9Br products on substitution of a hydrogen on the aromatic ring with bromine
(d) C10H14; gives two C10H13Cl products on substitution of a hydrogen on the aromatic ring with chlorine
![Check Mark](/static/check-mark.png)
a) C9H12; gives only one C9H11Br product on substitution of a hydrogen on the aromatic ring with bromine
Interpretation:
A possible structure for the hydrocarbon with molecular formula C9H12 that gives only one monobromination product C9H11Br on substitution of a hydrogen on the aromatic ring with bromine is to be given.
Concept introduction:
All aromatic compounds are derivatives of benzene. The benzene ring accounts for six carbon atoms. The remaining carbons can be attached as alkyl group like methyl, ethyl etc. to the benzene ring.
To propose:
A possible structure for the hydrocarbon with molecular formula C9H12 that gives only one monobromination product C9H11Br on substitution of a hydrogen on the aromatic ring with bromine.
Answer to Problem 23AP
A possible structure for the hydrocarbon with molecular formula C9H12 that gives only one monobromination product C9H11Br on substitution of a hydrogen atom on the aromatic ring with bromine is
Explanation of Solution
The molecular formula of the compound is C9H12. Benzene ring accounts for six carbons. When the three carbons remaining are arranged as three methyl groups alternatively on the benzene ring the three hydrogens on the other three carbons become equivalent. Hence upon bromination, the hydrocarbon gives only one monosubstituted product.
A possible structure for the hydrocarbon with molecular formula C9H12 that gives only one monobromination product C9H11Br on substitution of a hydrogen atom on the aromatic ring with bromine is
![Check Mark](/static/check-mark.png)
b) C10H14; gives only one C10H13Cl product on substitution of a hydrogen on the aromatic ring with chlorine
Interpretation:
A possible structure for the hydrocarbon with molecular formula C10H14 that gives only one monochlorination product C10H13Cl on substitution of a hydrogen on the aromatic ring with chlorine is to be given.
Concept introduction:
All aromatic compounds are derivatives of benzene. The benzene ring accounts for six carbon atoms. The remaining carbons can be attached as alkyl group like methyl, ethyl etc. to the benzene ring. Only one monosubstituted product will be obtained only if all the hydrogen atoms in the aromatic ring are equivalent.
To propose:
A possible structure for the hydrocarbon with molecular formula C10H14 that gives only one monochlorination product C10H13Cl on substitution of a hydrogen on the aromatic ring with chlorine is to be given.
Answer to Problem 23AP
A possible structure for the hydrocarbon with molecular formula C10H14 that gives only one monochlorination product, C10H13Cl, on substitution of a hydrogen atom on the aromatic ring with chlorine is
Explanation of Solution
The molecular formula of the hydrocarbon is C10H14. Benzene ring accounts for six carbons. The remaining four carbons can be arranged as four methyl groups or as two ethyl groups on the benzene ring in four different ways as shown such that remaining hydrogen atoms become equivalent. Hence upon chlorination, the hydrocarbon will give only one monosubstituted product.
A possible structure for the hydrocarbon with molecular formula C10H14 that gives only one monochlorination product, C10H14Cl, on substitution of a hydrogen atom on the aromatic ring with chlorine is
![Check Mark](/static/check-mark.png)
c) C8H10; gives three C8H9Br products on substitution of a hydrogen on the aromatic ring with bromine
Interpretation:
A possible structure for the hydrocarbon with molecular formula C8H10 that gives three monobromination products. C8H9Br, on substitution of a hydrogen on the aromatic ring with bromine is to be given.
Concept introduction:
All aromatic compounds are derivatives of benzene. The benzene ring accounts for six carbon atoms. The remaining carbons can be attached as alkyl group like methyl, ethyl etc. to the benzene ring.
To propose:
A possible structure for the hydrocarbon with molecular formula C8H10 that gives three products, C8H9Br, on substitution of a hydrogen on the aromatic ring with bromine.
Answer to Problem 23AP
A possible structure for the hydrocarbon with molecular formula C8H10 that gives three monobromination products C9H11Br on substitution of a hydrogen atom on the aromatic ring with bromine is
Explanation of Solution
The molecular formula of the hydrocarbon is C8H10. Benzene ring accounts for six carbons. When the two carbons remaining are arranged as two methyl groups meta to each other or as an ethyl group on the benzene ring hydrogens on the other carbon atoms in the ring classify themselves into three different groups. Hence upon bromination, the hydrocarbon gives three monosubstituted products.
A possible structure for the hydrocarbon with molecular formula C8H10 that gives three monobromination products, C9H11Br, on substitution of a hydrogen atom on the aromatic ring with bromine is
![Check Mark](/static/check-mark.png)
d) C10H14; gives two C10H13Cl products on substitution of a hydrogen atom on the aromatic ring with chlorine
Interpretation:
A possible structure for the hydrocarbon with molecular formula C10H14 that gives two monochlorination products C10H13Cl on substitution of a hydrogen atom on the aromatic ring with chlorine is to be given.
Concept introduction:
All aromatic compounds are derivatives of benzene. The benzene ring accounts for six carbon atoms. The remaining carbons can be attached as alkyl group like methyl, ethyl etc. to the benzene ring.
To propose:
A possible structure for the hydrocarbon with molecular formula C10H14 that gives two products, C10H13Cl, on substitution of a hydrogen on the aromatic ring with chlorine.
Answer to Problem 23AP
Possible structure for the hydrocarbon with molecular formula C10H10 that gives two monobromination products, C10H13Cl, on substitution of a hydrogen atom on the aromatic ring with chlorine is
Explanation of Solution
The molecular formula of the compound is C10H14. Benzene ring accounts for six carbons. The four carbons remaining can be arranged as two ethyl groups or as an ethyl & two methyl groups or as propyl & methyl groups or as isopropyl & methyl groups on the benzene ring as shown so that the hydrogens on the other carbon atoms in the ring classify themselves into two different groups. Hence upon chlorination, the hydrocarbon gives two monosubstituted products.
A possible structure for the hydrocarbon with molecular formula C10H10 that gives two monobromination products, C10H13Cl, on substitution of a hydrogen atom on the aromatic ring with chlorine is
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: Organic Chemistry, 9th, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Transmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forwardNonearrow_forwardDraw the Lewis structure of C2H4Oarrow_forward
- a) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forwardDr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forward
- Experiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080485/9781305080485_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580350/9781305580350_smallCoverImage.gif)