Analyzing critical points Find the critical points of the following functions. Use the Second Derivative Test to determine (if possible) whether each critical point corresponds to a local maximum , local minimum , or saddle point. Confirm your results using a graphing utility. 29. f ( x , y ) = x 1 + x 2 + y 2
Analyzing critical points Find the critical points of the following functions. Use the Second Derivative Test to determine (if possible) whether each critical point corresponds to a local maximum , local minimum , or saddle point. Confirm your results using a graphing utility. 29. f ( x , y ) = x 1 + x 2 + y 2
Analyzing critical pointsFind the critical points of the following functions. Use the Second Derivative Test to determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or saddle point. Confirm your results using a graphing utility.
29.
f
(
x
,
y
)
=
x
1
+
x
2
+
y
2
Formula Formula A function f(x) attains a local maximum at x=a , if there exists a neighborhood (a−δ,a+δ) of a such that, f(x)<f(a), ∀ x∈(a−δ,a+δ),x≠a f(x)−f(a)<0, ∀ x∈(a−δ,a+δ),x≠a In such case, f(a) attains a local maximum value f(x) at x=a .
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Which degenerate conic is formed when a double cone is sliced through the apex by a plane parallel to the slant edge of the cone?
1/ Solve the following:
1 x +
X + cos(3X)
-75
-1
2
2
(5+1) e
5² + 5 + 1
3 L
-1
1
5² (5²+1)
1
5(5-5)