Student Solutions Manual Single Variable For University Calculus: Early Transcendentals
4th Edition
ISBN: 9780135166130
Author: Joel R. Hass, Maurice D. Weir, George B. Thomas Jr., Przemyslaw Bogacki
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.6, Problem 15E
To determine
Find the surface
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
use a graphing utility to sketch the graph of the function and then use the graph to help identify or approximate the domain and range of the function. f(x)= x*sqrt(9-(x^2))
use a graphing utility to sketch the graph of the function and then use the graph to help identify or approximate the domain and range of the function. f(x)=xsqrt(9-(x^2))
Calculate a (bxc) where a = i, b = j, and c = k.
Chapter 15 Solutions
Student Solutions Manual Single Variable For University Calculus: Early Transcendentals
Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Match the vector equations in Exercises 1–8 with...Ch. 15.1 - Prob. 8ECh. 15.1 - Evaluate ∫C (x + y) ds, where C is the...Ch. 15.1 - Evaluate ∫C (x − y + z − 2) ds, where C is the...
Ch. 15.1 - Evaluate ∫C (xy + y + z) ds along the curve r(t) =...Ch. 15.1 - Evaluate Cx2+y2ds along the curve r(t) = (4 cos...Ch. 15.1 - Find the line integral of f(x, y, z) = x + y + z...Ch. 15.1 - Find the line integral of over the curve r(t) =...Ch. 15.1 - Integrate over the path C1 followed by C2 from...Ch. 15.1 - Prob. 16ECh. 15.1 - Integrate f(x, y, z) = (x + y + z)/(x2+ y2+ z2)...Ch. 15.1 - Integrate over the circle r(t) = (a cos t)j + (a...Ch. 15.1 - Evaluate ∫C x ds, where C is
the straight-line...Ch. 15.1 - Evaluate , where C is
the straight-line segment x...Ch. 15.1 - Find the line integral of along the curve r(t) =...Ch. 15.1 - Prob. 22ECh. 15.1 - Prob. 23ECh. 15.1 - Find the line integral of along the curve , 1/2 ≤...Ch. 15.1 - Prob. 25ECh. 15.1 - Prob. 26ECh. 15.1 - Prob. 27ECh. 15.1 - Prob. 28ECh. 15.1 - In Exercises 27–30, integrate f over the given...Ch. 15.1 - In Exercises 27–30, integrate f over the given...Ch. 15.1 - Prob. 31ECh. 15.1 - Prob. 32ECh. 15.1 - Mass of a wire Find the mass of a wire that lies...Ch. 15.1 - Center of mass of a curved wire A wire of density ...Ch. 15.1 - Mass of wire with variable density Find the mass...Ch. 15.1 - Center of mass of wire with variable density Find...Ch. 15.1 - Prob. 37ECh. 15.1 - Prob. 38ECh. 15.1 - Prob. 39ECh. 15.1 - Wire of constant density A wire of constant...Ch. 15.1 - Prob. 41ECh. 15.1 - Prob. 42ECh. 15.2 - Find the gradient fields of the functions in...Ch. 15.2 - Find the gradient fields of the functions in...Ch. 15.2 - Find the gradient fields of the functions in...Ch. 15.2 - Find the gradient fields of the functions in...Ch. 15.2 - Give a formula F = M(x, y)i + N(x, y)j for the...Ch. 15.2 - Give a formula F = M(x, y)i + N(x, y)j for the...Ch. 15.2 - In Exercises 7−12, find the line integrals of F...Ch. 15.2 - In Exercises 7−12, find the line integrals of F...Ch. 15.2 - In Exercises 7−12, find the line integrals of F...Ch. 15.2 - In Exercises 7−12, find the line integrals of F...Ch. 15.2 - Line Integrals of Vector Fields
In Exercises 7−12,...Ch. 15.2 - Line Integrals of Vector Fields
In Exercises 7−12,...Ch. 15.2 - In Exercises 1316, find the line integrals along...Ch. 15.2 - In Exercises 13–16, find the line integrals along...Ch. 15.2 - In Exercises 13–16, find the line integrals along...Ch. 15.2 - In Exercises 13–16, find the line integrals along...Ch. 15.2 - Along the curve , , evaluate each of the following...Ch. 15.2 - Along the curve , , evaluate each of the following...Ch. 15.2 - In Exercises 19–22, find the work done by F over...Ch. 15.2 - In Exercises 19–22, find the work done by F over...Ch. 15.2 - In Exercises 19–22, find the work done by F over...Ch. 15.2 - In Exercises 19–22, find the work done by F over...Ch. 15.2 - Evaluate along the curve from (–1, 1) to (2,...Ch. 15.2 - Evaluate counterclockwise around the triangle...Ch. 15.2 - Evaluate CFTds for the vector field F=x2iyj along...Ch. 15.2 - Evaluate for the vector field counterclockwise...Ch. 15.2 - Work Find the work done by the force F = xyi + (y...Ch. 15.2 - Work Find the work done by the gradient of f(x, y)...Ch. 15.2 - Circulation and flux Find the circulation and flux...Ch. 15.2 - Flux across a circle Find the flux of the...Ch. 15.2 - In Exercises 31–34, find the circulation and flux...Ch. 15.2 - In Exercises 31–34, find the circulation and flux...Ch. 15.2 - In Exercises 31–34, find the circulation and flux...Ch. 15.2 - In Exercises 31–34, find the circulation and flux...Ch. 15.2 - Flow integrals Find the flow of the velocity field...Ch. 15.2 - Flux across a triangle Find the flux of the field...Ch. 15.2 - The flow of a gas with a density of over the...Ch. 15.2 - The flow of a gas with a density of over the...Ch. 15.2 - Find the flow of the velocity field F = y2i + 2xyj...Ch. 15.2 - Find the circulation of the field F = yi + (x +...Ch. 15.2 - Prob. 41ECh. 15.2 - Prob. 42ECh. 15.2 - Prob. 43ECh. 15.2 - Prob. 44ECh. 15.2 - Prob. 45ECh. 15.2 - Prob. 46ECh. 15.2 - Spin field Draw the spin field
(see Figure 15.13)...Ch. 15.2 - Prob. 48ECh. 15.2 - Prob. 49ECh. 15.2 - Prob. 50ECh. 15.2 - Prob. 51ECh. 15.2 - Prob. 52ECh. 15.2 - Prob. 53ECh. 15.2 - Prob. 54ECh. 15.2 - Prob. 55ECh. 15.2 - Prob. 56ECh. 15.2 - Prob. 57ECh. 15.2 - Prob. 58ECh. 15.2 - Prob. 59ECh. 15.2 - Prob. 60ECh. 15.2 - Flow along a curve The field F = xyi + yj − yzk is...Ch. 15.2 - Prob. 62ECh. 15.3 - Which fields in Exercises 1–6 are conservative,...Ch. 15.3 - Which fields in Exercises 1–6 are conservative,...Ch. 15.3 - Which fields in Exercises 1–6 are conservative,...Ch. 15.3 - Which fields in Exercises 1–6 are conservative,...Ch. 15.3 - Which fields in Exercises 1−6 are conservative,...Ch. 15.3 - Which fields in Exercises 1−6 are conservative,...Ch. 15.3 - Finding Potential Functions In Exercises 712, find...Ch. 15.3 -
In Exercises 7–12, find a potential function f...Ch. 15.3 - In Exercises 7–12, find a potential function f for...Ch. 15.3 - In Exercises 7–12, find a potential function f for...Ch. 15.3 - In Exercises 7–12, find a potential function f for...Ch. 15.3 - In Exercises 7–12, find a potential function f for...Ch. 15.3 - In Exercises 13–17, show that the differential...Ch. 15.3 - In Exercises 13–17, show that the differential...Ch. 15.3 - In Exercises 13–17, show that the differential...Ch. 15.3 - In Exercises 13–17, show that the differential...Ch. 15.3 - In Exercises 13–17, show that the differential...Ch. 15.3 - Although they are not defined on all of space R3,...Ch. 15.3 - Prob. 19ECh. 15.3 - Prob. 20ECh. 15.3 - Prob. 21ECh. 15.3 - Prob. 22ECh. 15.3 - Prob. 23ECh. 15.3 - Prob. 24ECh. 15.3 - Prob. 25ECh. 15.3 - Prob. 26ECh. 15.3 - In Exercises 27 and 28, find a potential function...Ch. 15.3 - In Exercises 27 and 28, find a potential function...Ch. 15.3 - Work along different paths Find the work done by F...Ch. 15.3 - Work along different paths Find the work done by F...Ch. 15.3 - Evaluating a work integral two ways Let F =...Ch. 15.3 - Prob. 32ECh. 15.3 - Exact differential form How are the constants a,...Ch. 15.3 - Prob. 34ECh. 15.3 - Prob. 35ECh. 15.3 - Prob. 36ECh. 15.3 - Prob. 37ECh. 15.3 - Prob. 38ECh. 15.4 - In Exercises 1–6, find the k-component of curl(F)...Ch. 15.4 - Prob. 2ECh. 15.4 - Prob. 3ECh. 15.4 - Prob. 4ECh. 15.4 - In Exercises 1–6, find the k-component of curl(F)...Ch. 15.4 - Prob. 6ECh. 15.4 - In Exercises 710, verify the conclusion of Green’s...Ch. 15.4 - In Exercises 7–10, verify the conclusion of...Ch. 15.4 - In Exercises 7–10, verify the conclusion of...Ch. 15.4 - In Exercises 7–10, verify the conclusion of...Ch. 15.4 - In Exercises 11–20, use Green’s Theorem to find...Ch. 15.4 - In Exercises 11–20, use Green’s Theorem to find...Ch. 15.4 - In Exercises 11–20, use Green’s Theorem to find...Ch. 15.4 - Prob. 14ECh. 15.4 - In Exercises 11–20, use Green’s Theorem to find...Ch. 15.4 - Prob. 16ECh. 15.4 - Prob. 17ECh. 15.4 - Prob. 18ECh. 15.4 - In Exercises 11–20, use Green’s Theorem to find...Ch. 15.4 - In Exercises 11–20, use Green’s Theorem to find...Ch. 15.4 - Find the counterclockwise circulation and outward...Ch. 15.4 - Prob. 22ECh. 15.4 - Prob. 23ECh. 15.4 - Prob. 24ECh. 15.4 - Prob. 25ECh. 15.4 - Prob. 26ECh. 15.4 - Apply Green’s Theorem to evaluate the integrals in...Ch. 15.4 - Prob. 28ECh. 15.4 - Apply Green’s Theorem to evaluate the integrals in...Ch. 15.4 - Apply Green’s Theorem to evaluate the integrals in...Ch. 15.4 - Prob. 31ECh. 15.4 - Prob. 32ECh. 15.4 - Prob. 33ECh. 15.4 - Prob. 34ECh. 15.4 - Prob. 35ECh. 15.4 - Prob. 36ECh. 15.4 - Prob. 37ECh. 15.4 - Prob. 38ECh. 15.4 - Prob. 39ECh. 15.4 - Prob. 40ECh. 15.4 - Prob. 41ECh. 15.4 - Prob. 42ECh. 15.4 - Prob. 43ECh. 15.4 - Prob. 44ECh. 15.4 - Regions with many holes Green’s Theorem holds for...Ch. 15.4 - Prob. 46ECh. 15.4 - Prob. 47ECh. 15.4 - Prob. 48ECh. 15.5 - In Exercises 1–16, find a parametrization of the...Ch. 15.5 - Prob. 2ECh. 15.5 - Prob. 3ECh. 15.5 - Prob. 4ECh. 15.5 - In Exercises 1–16, find a parametrization of the...Ch. 15.5 - Prob. 6ECh. 15.5 - In Exercises 1–16, find a parametrization of the...Ch. 15.5 - Prob. 8ECh. 15.5 - Prob. 9ECh. 15.5 - Prob. 10ECh. 15.5 - In Exercises 1–16, find a parametrization of the...Ch. 15.5 - Prob. 12ECh. 15.5 - In Exercises 1–16, find a parametrization of the...Ch. 15.5 - Prob. 14ECh. 15.5 - Prob. 15ECh. 15.5 - Prob. 16ECh. 15.5 - In Exercises 17–26, use a parametrization to...Ch. 15.5 - Prob. 18ECh. 15.5 - Prob. 19ECh. 15.5 - Prob. 20ECh. 15.5 - Prob. 21ECh. 15.5 - In Exercises 17–26, use a parametrization to...Ch. 15.5 - Prob. 23ECh. 15.5 - In Exercises 17–26, use a parametrization to...Ch. 15.5 - Prob. 25ECh. 15.5 - In Exercises 17–26, use a parametrization to...Ch. 15.5 - Prob. 27ECh. 15.5 - Prob. 28ECh. 15.5 - Prob. 29ECh. 15.5 - Prob. 30ECh. 15.5 - Prob. 31ECh. 15.5 - Prob. 32ECh. 15.5 - Parametrization of an ellipsoid The...Ch. 15.5 - Prob. 34ECh. 15.5 - Prob. 35ECh. 15.5 - Prob. 36ECh. 15.5 - Prob. 37ECh. 15.5 - Prob. 38ECh. 15.5 - Prob. 39ECh. 15.5 - Prob. 40ECh. 15.5 - Prob. 41ECh. 15.5 - Prob. 42ECh. 15.5 - Prob. 43ECh. 15.5 - Find the area of the upper portion of the cylinder...Ch. 15.5 - Prob. 45ECh. 15.5 - Prob. 46ECh. 15.5 - Prob. 47ECh. 15.5 - Prob. 48ECh. 15.5 - Prob. 49ECh. 15.5 - Prob. 50ECh. 15.5 - Prob. 51ECh. 15.5 - Prob. 52ECh. 15.5 - Prob. 53ECh. 15.5 - Prob. 54ECh. 15.5 - Prob. 55ECh. 15.5 - Prob. 56ECh. 15.6 - In Exercises 1–8, integrate the given function...Ch. 15.6 - In Exercises 18, integrate the given function over...Ch. 15.6 - In Exercises 1–8, integrate the given function...Ch. 15.6 - In Exercises 1–8, integrate the given function...Ch. 15.6 - Prob. 5ECh. 15.6 - Prob. 6ECh. 15.6 - Prob. 7ECh. 15.6 - Prob. 8ECh. 15.6 - Prob. 9ECh. 15.6 - Prob. 10ECh. 15.6 - Prob. 11ECh. 15.6 - Prob. 12ECh. 15.6 - Prob. 13ECh. 15.6 - Prob. 14ECh. 15.6 - Integrate G(x, y, z) = z − x over the portion of...Ch. 15.6 - Prob. 16ECh. 15.6 - Prob. 17ECh. 15.6 - Prob. 18ECh. 15.6 - In Exercises 19–28, use a parametrization to find...Ch. 15.6 - Prob. 20ECh. 15.6 - Prob. 21ECh. 15.6 - Prob. 22ECh. 15.6 - Prob. 23ECh. 15.6 - Prob. 24ECh. 15.6 - Prob. 25ECh. 15.6 - Prob. 26ECh. 15.6 - In Exercises 19–28, use a parametrization to find...Ch. 15.6 - Prob. 28ECh. 15.6 - Prob. 29ECh. 15.6 - Prob. 30ECh. 15.6 - Prob. 31ECh. 15.6 - Prob. 32ECh. 15.6 - Prob. 33ECh. 15.6 - Prob. 34ECh. 15.6 - Prob. 35ECh. 15.6 - Prob. 36ECh. 15.6 - Find the flux of the field through the surface...Ch. 15.6 - Prob. 38ECh. 15.6 - Prob. 39ECh. 15.6 - Prob. 40ECh. 15.6 - Prob. 41ECh. 15.6 - Prob. 42ECh. 15.6 - Prob. 43ECh. 15.6 - Prob. 44ECh. 15.6 - Prob. 45ECh. 15.6 - Prob. 46ECh. 15.6 - Prob. 47ECh. 15.6 - Prob. 48ECh. 15.6 - Prob. 49ECh. 15.6 - Prob. 50ECh. 15.7 - Prob. 1ECh. 15.7 - Prob. 2ECh. 15.7 - Prob. 3ECh. 15.7 - Prob. 4ECh. 15.7 - Prob. 5ECh. 15.7 - Prob. 6ECh. 15.7 - In Exercises 7–12, use the surface integral in...Ch. 15.7 - Prob. 8ECh. 15.7 - Prob. 9ECh. 15.7 - Prob. 10ECh. 15.7 - Prob. 11ECh. 15.7 - Prob. 12ECh. 15.7 - Prob. 13ECh. 15.7 - Prob. 14ECh. 15.7 - Prob. 15ECh. 15.7 - Prob. 16ECh. 15.7 - Prob. 17ECh. 15.7 - Prob. 18ECh. 15.7 - In Exercises 19–24, use the surface integral in...Ch. 15.7 - Prob. 20ECh. 15.7 - In Exercises 19–24, use the surface integral in...Ch. 15.7 - Prob. 22ECh. 15.7 - Prob. 23ECh. 15.7 - Prob. 24ECh. 15.7 - Prob. 25ECh. 15.7 - Verify Stokes’ Theorem for the vector field F =...Ch. 15.7 - Zero circulation Use Equation (8) and Stokes’...Ch. 15.7 - Prob. 28ECh. 15.7 - Prob. 29ECh. 15.7 - Prob. 30ECh. 15.7 - Prob. 31ECh. 15.7 - Does Stokes’ Theorem say anything special about...Ch. 15.7 - Let R be a region in the xy-plane that is bounded...Ch. 15.7 - Zero curl, yet the field is not conservative Show...Ch. 15.8 - Prob. 1ECh. 15.8 - Prob. 2ECh. 15.8 - Prob. 3ECh. 15.8 - Prob. 4ECh. 15.8 - Prob. 5ECh. 15.8 - Prob. 6ECh. 15.8 - Prob. 7ECh. 15.8 - Prob. 8ECh. 15.8 - Prob. 9ECh. 15.8 - In Exercises 920, use the Divergence Theorem to...Ch. 15.8 - Prob. 11ECh. 15.8 - Prob. 12ECh. 15.8 - Prob. 13ECh. 15.8 - Prob. 14ECh. 15.8 - Prob. 15ECh. 15.8 - Prob. 16ECh. 15.8 - Prob. 17ECh. 15.8 - Prob. 18ECh. 15.8 - Prob. 19ECh. 15.8 - Prob. 20ECh. 15.8 - Prob. 21ECh. 15.8 - Prob. 22ECh. 15.8 - Prob. 23ECh. 15.8 - Prob. 24ECh. 15.8 - Prob. 25ECh. 15.8 - Prob. 26ECh. 15.8 - Prob. 27ECh. 15.8 - Compute the net outward flux of the vector field F...Ch. 15.8 - Prob. 29ECh. 15.8 - Prob. 30ECh. 15.8 - Prob. 31ECh. 15.8 - Prob. 32ECh. 15.8 - Prob. 33ECh. 15.8 - Prob. 34ECh. 15.8 - Prob. 35ECh. 15.8 - Prob. 36ECh. 15 - Prob. 1GYRCh. 15 - Prob. 2GYRCh. 15 - Prob. 3GYRCh. 15 - Prob. 4GYRCh. 15 - Prob. 5GYRCh. 15 - Prob. 6GYRCh. 15 - What is special about path independent fields?
Ch. 15 - Prob. 8GYRCh. 15 - Prob. 9GYRCh. 15 - Prob. 10GYRCh. 15 - Prob. 11GYRCh. 15 - Prob. 12GYRCh. 15 - What is an oriented surface? What is the surface...Ch. 15 - Prob. 14GYRCh. 15 - Prob. 15GYRCh. 15 - Prob. 16GYRCh. 15 - Prob. 17GYRCh. 15 - Prob. 18GYRCh. 15 - Prob. 1PECh. 15 - The accompanying figure shows three polygonal...Ch. 15 - Prob. 3PECh. 15 - Prob. 4PECh. 15 - Prob. 5PECh. 15 - Prob. 6PECh. 15 - Prob. 7PECh. 15 - Prob. 8PECh. 15 - Prob. 9PECh. 15 - Prob. 10PECh. 15 - Prob. 11PECh. 15 - Prob. 12PECh. 15 - Prob. 13PECh. 15 - Prob. 14PECh. 15 - Prob. 15PECh. 15 - Prob. 16PECh. 15 - Prob. 17PECh. 15 - Prob. 18PECh. 15 - Prob. 19PECh. 15 - Prob. 20PECh. 15 - Prob. 21PECh. 15 - Prob. 22PECh. 15 - Prob. 23PECh. 15 - Prob. 24PECh. 15 - Prob. 25PECh. 15 - Prob. 26PECh. 15 - Prob. 27PECh. 15 - Prob. 28PECh. 15 - Prob. 29PECh. 15 - Prob. 30PECh. 15 - Prob. 31PECh. 15 - Prob. 32PECh. 15 - Prob. 33PECh. 15 - Prob. 34PECh. 15 - Prob. 35PECh. 15 - Prob. 36PECh. 15 - Prob. 37PECh. 15 - Prob. 38PECh. 15 - Prob. 39PECh. 15 - Prob. 40PECh. 15 - Prob. 41PECh. 15 - Prob. 42PECh. 15 - Prob. 43PECh. 15 - Prob. 44PECh. 15 - Prob. 45PECh. 15 - Prob. 46PECh. 15 - Prob. 47PECh. 15 - Moment of inertia of a cube Find the moment of...Ch. 15 - Prob. 49PECh. 15 - Prob. 50PECh. 15 - Prob. 51PECh. 15 - Prob. 52PECh. 15 - Prob. 53PECh. 15 - In Exercises 53–56, find the outward flux of F...Ch. 15 - Prob. 55PECh. 15 - In Exercises 53–56, find the outward flux of F...Ch. 15 - Hemisphere, cylinder, and plane Let S be the...Ch. 15 - Prob. 58PECh. 15 - Prob. 59PECh. 15 - Prob. 60PECh. 15 - Prob. 1AAECh. 15 - Use the Green’s Theorem area formula in Exercises...Ch. 15 - Prob. 3AAECh. 15 - Use the Green’s Theorem area formula in Exercises...Ch. 15 - Prob. 5AAECh. 15 - Prob. 6AAECh. 15 - Prob. 7AAECh. 15 - Find the mass of a helicoids
r(r, ) = (r cos )i +...Ch. 15 - Prob. 9AAECh. 15 - Prob. 10AAECh. 15 - Prob. 11AAECh. 15 - Prob. 12AAECh. 15 - Prob. 13AAECh. 15 - Prob. 14AAECh. 15 - Prob. 15AAECh. 15 - Prob. 16AAECh. 15 - Prob. 17AAECh. 15 - Prob. 18AAECh. 15 - Prob. 19AAECh. 15 - Prob. 20AAECh. 15 - Prob. 21AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- i+2j+3k = (1,2,3) and b = -i-k. Calculate the cross product a x b where a Next calculate the area of the parallelogram spanned by a and b.arrow_forwardThe measured receptance data around two resonant picks of a structure are tabulated in the followings. Find the natural frequencies, damping ratios, and mode shapes of the structure. (30 points) (@)×10 m/N α₁₂ (@)×10 m/N w/2z (Hz) 99 0.1176 0.17531 0.1114 -0.1751i 101 -0.0302 0.2456i -0.0365 -0.2453i 103 -0.1216 0.1327i -0.1279-0.1324i 220 0.0353 0.0260i -0.0419+0.0259i 224 0.0210 0.0757i |-0.0273 +0.0756i 228 -0.0443 0.0474i 0.0382 +0.0474iarrow_forward== 1. A separable differential equation can be written in the form hy) = g(a) where h(y) is a function of y only, and g(x) is a function of r only. All of the equations below are separable. Rewrite each of these in the form h(y) = g(x), then find a general solution by integrating both sides. Determine whether the solutions you found are explicit (functions) or implicit (curves but not functions) (a) 1' = — 1/3 (b) y' = = --- Y (c) y = x(1+ y²)arrow_forward
- A circle of radius r centered at the point (0,r) in the plane will intersect the y-axis at the origin and the point A=(0,2r), as pictured below. A line passes through the point A and the point C=(11/2,0) on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the line, as 1 → ∞ A=(0,2r) B (0,0) (a) The line through A and C has equation: y= 2 117 x+27 (b) The x-coordinate of the point B is 4472 121,2 +4 40 (c) The y-coordinate of the point B is +27 121 44 (d) The limit as r→ ∞ of the x-coordinate of B is 121 (if your answer is oo, write infinity).arrow_forward1. Show that the vector field F(x, y, z) = (2x sin ye³)ix² cos yj + (3xe³ +5)k satisfies the necessary conditions for a conservative vector field, and find a potential function for F.arrow_forwardi need help pleasearrow_forward
- 6. (i) Sketch the trace of the following curve on R², (t) = (sin(t), 3 sin(t)), tЄ [0, π]. [3 Marks] Total marks 10 (ii) Find the length of this curve. [7 Marks]arrow_forwardhelppparrow_forward7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward
- 6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forwardTotal marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forwardTotal marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY