VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 15.6, Problem 15.219P
To determine

The acceleration of the collar A when c=120mm.

Expert Solution & Answer
Check Mark

Answer to Problem 15.219P

The acceleration of collar A is aA=(8.764mm/s2)j_.

Explanation of Solution

Given information:

The collar B moves towards D at a constant speed of vB=50mm/s.

The length of rod AB is lAB=300mm

The distance c=120mm

Calculation:

Calculate the position vector (r) as shown below.

The position of A.

rA=yj

The position of D.

rD=(90mm)i

The position of C.

rC=(180mm)k

The position of D with respect to C.

rD/C=rDrC

Substitute (90mm)i for rD and (180mm)k for rC.

rD/C=(90mm)i(180mm)k

Calculate the length of CD (lCD) as shown below.

lCD=902+(180)2=40,500=201.246mm

The position of B with respect to C.

rB/C=c(rD/C)180

Substitute 120mm for c and (90mm)i(180mm)k for rD/C.

rB/C=120(90i180k)180=(60mm)i(120mm)k

The position of B.

rB=rC+rB/C

Substitute (60mm)i(120mm)k for rB/C and (180mm)k for rC.

rB=(180mm)k+((60mm)i(120mm)k)=(60mm)i+(60mm)k

The position of A with respect to B.

rA/B=rArB

Substitute yj for rA and (60mm)i+(60mm)k for rB.

rA/B=yj((60mm)i+(60mm)k)=(60mm)i+yj(60mm)k (1)

Calculate the length value of y of AB using the relation as shown below.

lAB2=(60)2+y2+(60)2

Substitute 300mm for lAB.

3002=7,200+y2y2=82,800y=287.75mm

Calculate the position of A with respect to B (rA/B) as shown below.

Substitute 287.75mm for y in Equation (1).

rA/B=(60mm)i+(287.75mm)j(60mm)k

Calculate the velocity at B (vB) as shown below.

vB=vB×rD/ClCD

Substitute 201.246mm for lCD, 50mm/s for vB, and (90mm)i(180mm)k for rD/C.

vB=50(90i180k)201.246=22.3607i44.7214k=(22.3607mm/s)i(44.7214mm/s)k

Calculate the velocity of collar A with respect to B (vA/B) as shown below.

vA/B=ωAB×rA/B

The velocity of collar A with respect to B vA/B is perpendicular to rA/B. Hence, rA/BvA/B=0.

Calculate the velocity of collar A (vA) as shown below.

vA=vB+vA/B

Apply the dot product of rA/B on both sides of the Equation.

rA/BvA=rA/B(vB+vA/B)=rA/BvB+rA/BvA/B

Substitute 0 for rA/BvA/B.

rA/BvA=rA/BvB

Substitute (60mm)i+(287.75mm)j(60mm)k for rA/B, (vA)j for vA, and (22.3607mm/s)i(44.7214mm/s)k for vB.

(60i+287.75j60k)(vAj)=(60i+287.75j60k)(22.3607i44.7214k)287.75vA=1,341.642+2,683.284287.75vA=1,341.642vA=4.66mm/s

Calculate the relative velocity of collar A with respect to B (vA/B) as shown below.

vA/B=vAvB

Substitute (4.66mm/s)j for vA and (22.3607mm/s)i(44.7214mm/s)k for vB.

vA/B=(4.66mm/s)j((22.3607mm/s)i(44.7214mm/s)k)=(22.3607mm/s)i+(4.66mm/s)j(44.7214mm/s)k

(vA/B)2=(22.3607)2+(4.66)2+(44.7214)2=2,521.7(mm/s)2

The acceleration of collar B is aB=0.

The acceleration of collar A is aA=aAj.

Calculate the acceleration of collar A with respect to B (aA/B) as shown below.

aA/B=αA/B×rA/B+ωAB×vA/B

The acceleration αA/B×rA/B is perpendicular to rA/B. Hence, rA/B(αA/B×rA/B)=0.

Calculate the acceleration of collar A (aA) as shown below.

aA=aB+aA/B

Substitute αA/B×rA/B+ωAB×vA/B for aA/B and 0 for aB.

aA=0+αA/B×rA/B+ωAB×vA/B=αA/B×rA/B+ωAB×vA/B

Apply the dot product of rA/B on both sides of the Equation.

rA/BaA=rA/BαA/B×rA/B+rA/BωA/B×vA/B=rA/BαA/B×rA/B+vA/BrA/B×ωA/B

Substitute 0 for rA/BαA/B×rA/B and vA/B for rA/B×ωA/B.

rA/BaA=0+vA/B(vA/B)=(vA/B)2

Substitute (60mm)i+(287.75mm)j(60mm)k for rA/B, aAj for aA, and 2,521.7(mm/s)2 for (vA/B)2.

(60i+287.75j60k)aAj=2,521.7287.75aA=2,521.7aA=8.764mm/s2

Therefore, the acceleration of collar A is aA=(8.76mm/s2)j_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three cables are pulling on a ring located at the origin, as shown in the diagram below.  FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°.  FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°.  Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N.  Specify the direction of FC using its coordinate direction angles.
turbomachienery
auto controls

Chapter 15 Solutions

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)

Ch. 15.1 - The angular acceleration of a shaft is defined by...Ch. 15.1 - The assembly shown consists of two rods and a...Ch. 15.1 - In Prob. 15.10, determine the velocity and...Ch. 15.1 - Prob. 15.12PCh. 15.1 - The rectangular block shown rotates about the...Ch. 15.1 - A circular plate of 120-mm radius is supported by...Ch. 15.1 - Prob. 15.15PCh. 15.1 - Prob. 15.16PCh. 15.1 - The earth makes one complete revolution on its...Ch. 15.1 - The sprocket wheel and chain shown are initially...Ch. 15.1 - Prob. 15.19PCh. 15.1 - Prob. 15.20PCh. 15.1 - The rated speed of drum B of the belt sander shown...Ch. 15.1 - The two pulleys shown may be operated with the V...Ch. 15.1 - A cyclist uses a stationary trainer during the...Ch. 15.1 - A gear reduction system consists of three gears A,...Ch. 15.1 - A belt is pulled to the right between cylinders A...Ch. 15.1 - Prob. 15.26PCh. 15.1 - Prob. 15.27PCh. 15.1 - A plastic film moves over two drums. During a 4-s...Ch. 15.1 - Cylinder A is moving downward with a velocity of 3...Ch. 15.1 - The system shown is held at rest by the...Ch. 15.1 - A load is to be raised 20 ft by the hoisting...Ch. 15.1 - A simple friction drive consists of two disks A...Ch. 15.1 - Prob. 15.33PCh. 15.1 - Two friction disks A and B are to be brought into...Ch. 15.1 - Two friction disks A and B are brought into...Ch. 15.1 - Steel tape is being wound onto a spool that...Ch. 15.1 - In a continuous printing process, paper is drawn...Ch. 15.2 - The ball rolls without slipping on the fixed...Ch. 15.2 - Three uniform rodsABC, DCE, and FGHare connected...Ch. 15.2 - Prob. 15.38PCh. 15.2 - An overhead door is guided by wheels at A and B...Ch. 15.2 - A painter is halfway up a 10-m ladder when the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB moves over a small wheel at C while end A...Ch. 15.2 - The disk shown moves in the xy plane. Knowing that...Ch. 15.2 - The disk shown moves in the xy plane. Knowing that...Ch. 15.2 - Prob. 15.46PCh. 15.2 - Velocity sensors are placed on a satellite that is...Ch. 15.2 - In the planetary gear system shown, the radius of...Ch. 15.2 - Prob. 15.49PCh. 15.2 - The outer gear C rotates with an angular velocity...Ch. 15.2 - Prob. 15.51PCh. 15.2 - A simplified gear system for a mechanical watch is...Ch. 15.2 - 15.53 and 15.54Arm ACB rotates about point C with...Ch. 15.2 - 15.53 and 15.54Arm ACB rotates about point C with...Ch. 15.2 - Knowing that at the instant shown the angular...Ch. 15.2 - Knowing that at the instant shown the velocity of...Ch. 15.2 - Knowing that the disk has a constant angular...Ch. 15.2 - The disk has a constant angular velocity of 20...Ch. 15.2 - The test rig shown was developed to perform...Ch. 15.2 - Prob. 15.60PCh. 15.2 - In the engine system shown, l = 160 mm and b = 60...Ch. 15.2 - In the engine system shown, l = 160 mm and b = 60...Ch. 15.2 - Knowing that the angular velocity of rod DE is a...Ch. 15.2 - In the position shown, bar AB has an angular...Ch. 15.2 - Prob. 15.65PCh. 15.2 - Prob. 15.66PCh. 15.2 - Prob. 15.67PCh. 15.2 - Prob. 15.68PCh. 15.2 - For the oil pump rig shown, link AB causes the...Ch. 15.2 - Both 6-in.-radius wheels roll without slipping on...Ch. 15.2 - The 80-mm-radius wheel shown rolls to the left...Ch. 15.2 - For the gearing shown, derive an expression for...Ch. 15.3 - The disk rolls without sliding on the fixed...Ch. 15.3 - Prob. 15.6CQCh. 15.3 - A juggling club is thrown vertically into the air....Ch. 15.3 - At the instant shown during deceleration, the...Ch. 15.3 - A helicopter moves horizontally in the x direction...Ch. 15.3 - Prob. 15.76PCh. 15.3 - Prob. 15.77PCh. 15.3 - Prob. 15.78PCh. 15.3 - In order to uncoil electrical wire from a spool...Ch. 15.3 - The arm ABC rotates with an angular velocity of 4...Ch. 15.3 - The double gear rolls on the stationary left rack...Ch. 15.3 - Prob. 15.82PCh. 15.3 - Rod ABD is guided by wheels at A and B that roll...Ch. 15.3 - Knowing that at the instant shown the angular...Ch. 15.3 - Knowing that at the instant shown the velocity of...Ch. 15.3 - A motor at O drives the windshield wiper mechanism...Ch. 15.3 - Prob. 15.88PCh. 15.3 - Small wheels have been attached to the ends of bar...Ch. 15.3 - Prob. 15.90PCh. 15.3 - The disk is released from rest and rolls down the...Ch. 15.3 - Prob. 15.92PCh. 15.3 - Two identical rods ABF and DBE are connected by a...Ch. 15.3 - Arm ABD is connected by pins to a collar at B and...Ch. 15.3 - Two rods ABD and DE are connected to three collars...Ch. 15.3 - Two 500-mm rods are pin-connected at D as shown....Ch. 15.3 - At the instant shown, the velocity of collar A is...Ch. 15.3 - Prob. 15.98PCh. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Prob. 15.101PCh. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.64....Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.65....Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.38....Ch. 15.4 - A rear-wheel-drive car starts from rest and...Ch. 15.4 - Fig. P15.105 and P15.106 15.105A 5-m steel beam is...Ch. 15.4 - For a 5-m steel beam AE, the acceleration of point...Ch. 15.4 - A 900-mm rod rests on a horizontal table. A force...Ch. 15.4 - In Prob. 15.107, determine the point of the rod...Ch. 15.4 - Knowing that point A is moving to the right at a...Ch. 15.4 - Knowing that at the instant shown crank BC has a...Ch. 15.4 - An automobile travels to the left at a constant...Ch. 15.4 - The 18-in.-radius flywheel is rigidly attached to...Ch. 15.4 - 15.113 and 15.114A 3-in.-radius drum is rigidly...Ch. 15.4 - 15.113 and 15.114A 3-in.-radius drum is rigidly...Ch. 15.4 - A heavy crate is being moved a short distance...Ch. 15.4 - Prob. 15.116PCh. 15.4 - The 100-mm-radius drum rolls without slipping on a...Ch. 15.4 - In the planetary gear system shown, the radius of...Ch. 15.4 - The 200-mm-radius disk rolls without sliding on...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - In the two-cylinder air compressor shown, the...Ch. 15.4 - The right leg of an athlete on a rowing machine...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - A straight rack rests on a gear of radius r = 3...Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - Knowing that the angular velocity of rod DE is a...Ch. 15.4 - Knowing that at the instant shown bar DE has an...Ch. 15.4 - 15.131 and 15.132Knowing that at the instant shown...Ch. 15.4 - 15.131 and 15.132Knowing that at the instant shown...Ch. 15.4 - 15.133 and 15.134Knowing that at the instant shown...Ch. 15.4 - 15.133 and 15.134Knowing that at the instant shown...Ch. 15.4 - Prob. 15.135PCh. 15.4 - For the oil pump rig shown, link AB causes the...Ch. 15.4 - Denoting by rA the position vector of a point A of...Ch. 15.4 - Prob. 15.138PCh. 15.4 - Prob. 15.139PCh. 15.4 - Prob. 15.140PCh. 15.4 - Prob. 15.141PCh. 15.4 - Prob. 15.142PCh. 15.4 - Prob. 15.143PCh. 15.4 - Crank AB rotates with a constant clockwise angular...Ch. 15.4 - Crank AB rotates with a constant clockwise angular...Ch. 15.4 - Solve the engine system from Sample Prob. 15.15...Ch. 15.4 - Prob. 15.147PCh. 15.4 - Prob. 15.148PCh. 15.4 - Prob. 15.149PCh. 15.5 - A person walks radially inward on a platform that...Ch. 15.5 - The motion of pin P is guided by slots cut in rods...Ch. 15.5 - The motion of pin P is guided by slots cut in rods...Ch. 15.5 - 15.152 and 15.153Two rotating rods are connected...Ch. 15.5 - 15.152 and 15.153Two rotating rods are connected...Ch. 15.5 - Pin P is attached to the wheel shown and slides in...Ch. 15.5 - Knowing that at the instant shown the angular...Ch. 15.5 - Prob. 15.156PCh. 15.5 - The motion of pin P is guided by slots cut in rods...Ch. 15.5 - Prob. 15.158PCh. 15.5 - Prob. 15.159PCh. 15.5 - Prob. 15.160PCh. 15.5 - Pin P is attached to the collar shown; the motion...Ch. 15.5 - Prob. 15.162PCh. 15.5 - Prob. 15.163PCh. 15.5 - At the instant shown, the length of the boom AB is...Ch. 15.5 - At the instant shown, the length of the boom AB is...Ch. 15.5 - Prob. 15.166PCh. 15.5 - Prob. 15.167PCh. 15.5 - Prob. 15.168PCh. 15.5 - 15.168 and 15.169A chain is looped around two...Ch. 15.5 - Prob. 15.170PCh. 15.5 - Prob. 15.171PCh. 15.5 - The collar P slides outward at a constant relative...Ch. 15.5 - Pin P slides in a circular slot cut in the plate...Ch. 15.5 - Prob. 15.174PCh. 15.5 - Prob. 15.175PCh. 15.5 - Knowing that at the instant shown the rod attached...Ch. 15.5 - Prob. 15.177PCh. 15.5 - In Prob. 15.177, determine the angular velocity...Ch. 15.5 - At the instant shown, bar BC has an angular...Ch. 15.5 - Prob. 15.180PCh. 15.5 - Rod AB passes through a collar that is welded to...Ch. 15.5 - Prob. 15.182PCh. 15.5 - Prob. 15.183PCh. 15.6 - The bowling ball shown rolls without slipping on...Ch. 15.6 - Prob. 15.185PCh. 15.6 - Prob. 15.186PCh. 15.6 - Prob. 15.187PCh. 15.6 - The rotor of an electric motor rotates at the...Ch. 15.6 - Prob. 15.189PCh. 15.6 - Prob. 15.190PCh. 15.6 - In the system shown, disk A is free to rotate...Ch. 15.6 - Prob. 15.192PCh. 15.6 - Prob. 15.193PCh. 15.6 - A radar system is used to track a new experimental...Ch. 15.6 - A 3-in.-radius disk spins at the constant rate 2 =...Ch. 15.6 - Prob. 15.196PCh. 15.6 - The cone shown rolls on the zx plane with its apex...Ch. 15.6 - At the instant shown, the robotic arm ABC is being...Ch. 15.6 - Prob. 15.199PCh. 15.6 - Prob. 15.200PCh. 15.6 - Several rods are brazed together to form the...Ch. 15.6 - In Prob. 15.201, the speed of point B is known to...Ch. 15.6 - Prob. 15.203PCh. 15.6 - Prob. 15.204PCh. 15.6 - Rod BC and BD are each 840 mm long and are...Ch. 15.6 - Rod AB is connected by ball-and-socket joints to...Ch. 15.6 - Prob. 15.207PCh. 15.6 - Prob. 15.208PCh. 15.6 - Prob. 15.209PCh. 15.6 - Prob. 15.210PCh. 15.6 - Prob. 15.211PCh. 15.6 - Prob. 15.212PCh. 15.6 - Prob. 15.213PCh. 15.6 - Prob. 15.214PCh. 15.6 - In Prob. 15.205, determine the acceleration of...Ch. 15.6 - In Prob. 15.206, determine the acceleration of...Ch. 15.6 - In Prob. 15.207, determine the acceleration of...Ch. 15.6 - Prob. 15.218PCh. 15.6 - Prob. 15.219PCh. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - Prob. 15.222PCh. 15.7 - Prob. 15.223PCh. 15.7 - Prob. 15.224PCh. 15.7 - The bent rod shown rotates at the constant rate of...Ch. 15.7 - The bent pipe shown rotates at the constant rate 1...Ch. 15.7 - The circular plate shown rotates about its...Ch. 15.7 - Prob. 15.228PCh. 15.7 - Prob. 15.229PCh. 15.7 - Prob. 15.230PCh. 15.7 - Prob. 15.231PCh. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - Prob. 15.233PCh. 15.7 - Prob. 15.234PCh. 15.7 - Prob. 15.235PCh. 15.7 - The arm AB of length 16 ft is used to provide an...Ch. 15.7 - The remote manipulator system (RMS) shown is used...Ch. 15.7 - A disk with a radius of 120 mm rotates at the...Ch. 15.7 - Prob. 15.239PCh. 15.7 - Prob. 15.240PCh. 15.7 - Prob. 15.241PCh. 15.7 - The cylinder shown rotates at the constant rate 2...Ch. 15.7 - Prob. 15.243PCh. 15.7 - Prob. 15.244PCh. 15.7 - Prob. 15.245PCh. 15.7 - Prob. 15.246PCh. 15.7 - Prob. 15.247PCh. 15 - A wheel moves in the xy plane in such a way that...Ch. 15 - Two blocks and a pulley are connected by...Ch. 15 - A baseball pitching machine is designed to deliver...Ch. 15 - The flywheel OD on the elliptical machine analyzed...Ch. 15 - The roller at point A on the elliptical machine...Ch. 15 - Knowing that at the instant shown rod AB has zero...Ch. 15 - Rod AB is attached to a collar at A and is fitted...Ch. 15 - Prob. 15.255RPCh. 15 - A disk of 0.15-m radius rotates at the constant...Ch. 15 - Prob. 15.257RPCh. 15 - Prob. 15.258RPCh. 15 - In the position shown, the thin rod moves at a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License