Concept explainers
Two friction disks A and B are brought into contact when the angular velocity of disk A is 240 rpm counterclockwise and disk B is at rest. A period of slipping follows and disk B makes two revolutions before reaching its final angular velocity. Assuming that the angular acceleration of each disk is constant and inversely proportional to the cube of its radius, determine (a) the angular acceleration of each disk, (b) the time during which the disks slip.
Fig. P15.34 and P15.35
(a)

Find the angular acceleration of disk A and B.
Answer to Problem 15.35P
The angular acceleration of disk A and B are
Explanation of Solution
Given information:
Consider the initial and final angular velocity of disk A are as follows:
Consider the initial and final angular velocity of disk B are
Consider the angular acceleration of the disk A and B are denoted by
Consider the angular displacement of the disk B is denoted by
Show the value of the angular displacement
The angular acceleration of disk A and B are constant.
The radius of the disk A and B are
The angular acceleration of disk A and B are inversely proportional to cube of their radius.
Calculation:
Calculate the final angular velocity of disk A using the relation:
Substitute
Calculate the angular displacement of the disk B using the relation:
Modify above Equation using Equation (1).
Substitute 0 for
Calculate the final angular velocity of the disk B using the relation:
Modify above Equation using Equation (1).
Substitute 0 for
Consider the contact point between the disk A and B are denoted by C.
Calculate the velocity at point C using the relation:
Substitute
Calculate the velocity at point C using the relation:
Substitute
Equate Equation (3) and (4).
Divide Equation (1) by (5).
Calculate the angular acceleration of disk A as follows:
Substitute
Thus, the angular acceleration of the disk A is
Calculate the angular acceleration of disk B as follows:
Substitute
Thus, the angular acceleration of the disk B is
(b)

Find the time at which the disk slip.
Answer to Problem 15.35P
The disk slip at time
Explanation of Solution
Given information:
Calculation:
Refer to Part (a).
Refer Equation (6).
The time at which the disk slip is at
Thus, the time at which the disk slip is at
Want to see more full solutions like this?
Chapter 15 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD A concrete wall retains water as shown. Assume that the wall is fixed at the base. Given: H = 3 m, t = 0.5m, Concrete unit weight = 23 kN/m3Unit weight of water = 9.81 kN/m3(Hint: The pressure of water is linearly increasing from the surface to the bottom with intensity 9.81d.)1. Find the maximum compressive stress (MPa) at the base of the wall if the water reaches the top.2. If the maximum compressive stress at the base of the wall is not to exceed 0.40 MPa, what is the maximum allowable depth(m) of the water?3. If the tensile stress at the base is zero, what is the maximum allowable depth (m) of the water?ANSWERS: (1) 1.13 MPa, (2) 2.0 m, (3) 1.20 marrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I NEED FBD A short plate is attached to the center of the shaft as shown. The bottom of the shaft is fixed to the ground.Given: a = 75 mm, h = 125 mm, D = 38 mmP1 = 24 kN, P2 = 28 kN1. Calculate the maximum torsional stress in the shaft, in MPa.2. Calculate the maximum flexural stress in the shaft, in MPa.3. Calculate the maximum horizontal shear stress in the shaft, in MPa.ANSWERS: (1) 167.07 MPa; (2) 679.77 MPa; (3) 28.22 MPaarrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD. The roof truss shown carries roof loads, where P = 10 kN. The truss is consisting of circular arcs top andbottom chords with radii R + h and R, respectively.Given: h = 1.2 m, R = 10 m, s = 2 m.Allowable member stresses:Tension = 250 MPaCompression = 180 MPa1. If member KL has square section, determine the minimum dimension (mm).2. If member KL has circular section, determine the minimum diameter (mm).3. If member GH has circular section, determine the minimum diameter (mm).ANSWERS: (1) 31.73 mm; (2) 35.81 mm; (3) 18.49 mmarrow_forward
- PROBLEM 3.23 3.23 Under normal operating condi- tions a motor exerts a torque of magnitude TF at F. The shafts are made of a steel for which the allowable shearing stress is 82 MPa and have diameters of dCDE=24 mm and dFGH = 20 mm. Knowing that rp = 165 mm and rg114 mm, deter- mine the largest torque TF which may be exerted at F. TF F rG- rp B CH TE Earrow_forward1. (16%) (a) If a ductile material fails under pure torsion, please explain the failure mode and describe the observed plane of failure. (b) Suppose a prismatic beam is subjected to equal and opposite couples as shown in Fig. 1. Please sketch the deformation and the stress distribution of the cross section. M M Fig. 1 (c) Describe the definition of the neutral axis. (d) Describe the definition of the modular ratio.arrow_forwardusing the theorem of three moments, find all the moments, I only need concise calculations with minimal explanations. The correct answers are provided at the bottomarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





