Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 56. f ( x , y , z ) = 4 − x 2 + 3 y 2 + z 2 2 ; P ( 0 , 2 , − 1 ) ; 〈 0 , 1 2 , 1 2 〉
Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 56. f ( x , y , z ) = 4 − x 2 + 3 y 2 + z 2 2 ; P ( 0 , 2 , − 1 ) ; 〈 0 , 1 2 , 1 2 〉
Solution Summary: The author explains how the gradient of f(x,y,z) is computed as follows.
Gradients in three dimensionsConsider the following functions f, points P, and unit vectorsu.
a.Compute the gradient of f and evaluate it at P
b.Find the unit vector in the direction of maximum increase of f at P.
c.Find the rate of change of the function in the direction of maximum increase at P.
d.Find the directional derivative at P in the direction of the given vector.
56.
f
(
x
,
y
,
z
)
=
4
−
x
2
+
3
y
2
+
z
2
2
;
P
(
0
,
2
,
−
1
)
;
〈
0
,
1
2
,
1
2
〉
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
3.1 Limits
1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice.
x+3°
x+3*
x+3
(a) Is 5
(c) Does not exist
(b) is 6
(d) is infinite
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
2. Answer the following questions.
(A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity
Vx (VF) V(V •F) - V²F
(B) [50%] Remark. You are confined to use the differential identities.
Let u and v be scalar fields, and F be a vector field given by
F = (Vu) x (Vv)
(i) Show that F is solenoidal (or incompressible).
(ii) Show that
G =
(uvv – vVu)
is a vector potential for F.
Chapter 15 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.