Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 35 . f ( x , y ) = 2 + x 2 + y 2 ; P ( 3 , 1 )
Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 35 . f ( x , y ) = 2 + x 2 + y 2 ; P ( 3 , 1 )
Interpreting directional derivativesA function f and a point P are given. Let θ correspond to the direction of the directional derivative.
a. Find the gradient and evaluate it at P.
b. Find the angles θ (with respect to the positive x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
c. Write the directional derivative at P as a function of θ; call this function g.
d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient.
Use undetermined coefficients to find the particular solution to
y"-2y-4y=3t+6
Yp(t) =
Car A starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/s^2 until it reaches a speed of 60ft/s. Afterwards it maintains the speed. Also, when t = 0, car B located 6000 ft down the road is traveling towards A at a constant speed of 80 ft/s. Determine the distance traveled by Car A when they pass each other.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
Chapter 15 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY