Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.4, Problem 15.4GI
The photo shows smoke particles tracing streamlines in a test of a car’s aerodynamic properties. Is the flow speed greater (a) over the top or (b) at the back?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Essential University Physics (3rd Edition)
Ch. 15.1 - What quantity of water has the same mass as 1 m3...Ch. 15.2 - Neglecting friction and other nonconservative...Ch. 15.3 - The density of a rubber ball is three-fifths that...Ch. 15.4 - The photo shows smoke particles tracing...Ch. 15.5 - A large tank is filled with liquid to the level h1...Ch. 15 - Why do your ears pop when you drive up a mountain?Ch. 15 - Commercial aircraft cabins are usually pressurized...Ch. 15 - Water pressure at the bottom of the ocean arises...Ch. 15 - The three containers in Fig. 15.22 are filled to...Ch. 15 - Why is it easier to float in the ocean than in...
Ch. 15 - Figure 15.23 shows a cork suspended from the...Ch. 15 - Meteorologists in the United States usually report...Ch. 15 - A mountain stream, frothy with entrained air...Ch. 15 - Why are dams thicker at the bottom than at the...Ch. 15 - Its not possible to breathe through a snorkel from...Ch. 15 - A helium-filled balloon stops rising long before...Ch. 15 - A barge filled with steel beams overturns in a...Ch. 15 - Why do airplanes take off into the wind?Ch. 15 - Is the flow speed behind a wind turbine greater or...Ch. 15 - The density of molasses is 1600kg/m3. Find the...Ch. 15 - Atomic nuclei have densities around 1017kg/m3,...Ch. 15 - Compressed air with mass 8.8 kg is stored in a...Ch. 15 - The pressure unit torr is defined as the pressure...Ch. 15 - Measurement of small pressure differencesfor...Ch. 15 - Whats the weight of a column of air with...Ch. 15 - A 4680-kg circus elephant balances on one foot. If...Ch. 15 - You unbend a paper clip made from 1.5-mm-diameter...Ch. 15 - Whats the density of a fluid whose pressure...Ch. 15 - A research submarine can withstand an external...Ch. 15 - Prob. 25ECh. 15 - A vertical tube open at the top contains 5.0 cm of...Ch. 15 - A child attempts to drink water through a...Ch. 15 - Barometric pressure in the eye of a hurricane is...Ch. 15 - Prob. 29ECh. 15 - A 5.4-g jewel has apparent weight 32 mN when...Ch. 15 - Styrofoams density is 160kg/m3. What percent error...Ch. 15 - A steel drum has volume 0.23 m3 and mass 16 kg....Ch. 15 - Water flows through a 2.5-cm-diameter pipe at 1.8...Ch. 15 - Show that pressure has the units of energy...Ch. 15 - A typical mass flow rate for the Mississippi River...Ch. 15 - Prob. 36ECh. 15 - A typical human aorta, the main artery from the...Ch. 15 - When a couple with total mass 120 kg lies on a...Ch. 15 - A fully loaded Volvo station wagon has mass 1950...Ch. 15 - Youre stuck in the exit row on a long flight, and...Ch. 15 - A vertical tube 1.0 cm in diameter and open at the...Ch. 15 - Dam breaks present a serious risk of widespread...Ch. 15 - A U-shaped tube open at both ends contains water...Ch. 15 - Prob. 44PCh. 15 - A garage lift has a 45-cm-diameter piston...Ch. 15 - Archimedes purportedly used his principle to...Ch. 15 - Youre testifying in a drunk-driving case for which...Ch. 15 - A glass beaker measures 14 cm high by 5.0 cm in...Ch. 15 - A typical supertanker has mass 2.0 106 kg and...Ch. 15 - A balloon contains gas of density and is to lift a...Ch. 15 - (a) How much helium (density 0.18 kg/m3) is needed...Ch. 15 - A 55-kg swimmer climbs onto a Styrofoam block of...Ch. 15 - If the blood pressure in the unobstructed artery...Ch. 15 - Youre a consultant for maple syrup producers. They...Ch. 15 - The water in a garden hose is at 140-kPa gauge...Ch. 15 - The venturi flowmeter shown in Fig. 15.26 is used...Ch. 15 - A 1.0-cm-diameter venturi flowmeter is inserted in...Ch. 15 - A balloons mass is 1.6 g when its empty. Its...Ch. 15 - Blood with density 1.06 g/cm3 and 10-kPa gauge...Ch. 15 - Prob. 60PCh. 15 - A drinking straw 20 cm long and 3.0 mm in diameter...Ch. 15 - In 2012, film producer James Cameron (Terminator,...Ch. 15 - Prob. 63PCh. 15 - Water emerges from a faucet of diameter d0 in...Ch. 15 - Assuming norm.nl atmospheric pressure, how massive...Ch. 15 - Figure 15.28 shows a simplified diagram of a Pitot...Ch. 15 - At a hearing on a proposed wind farm, a...Ch. 15 - A pencil is weighted so it floats vertically with...Ch. 15 - A can of height h and cross-sectional area A0 is...Ch. 15 - Density and pressure in Earths atmosphere are...Ch. 15 - (a) Use the result of Problem 70 to express...Ch. 15 - A circular pan of liquid with density is centered...Ch. 15 - A solid sphere of radius R and mass M has density ...Ch. 15 - The difference in air pressure between the inside...Ch. 15 - Find the torque that the water exerts about the...Ch. 15 - One vertical wall of a swimming pool is a regular...Ch. 15 - Youre a private investigator assisting a large...Ch. 15 - A plumber conies to your ancient apartment...Ch. 15 - Your class in naval architecture is working on the...Ch. 15 - Prob. 80PPCh. 15 - Prob. 81PPCh. 15 - Prob. 82PPCh. 15 - Prob. 83PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Suppose you see a crescent moon; how m...
Cosmic Perspective Fundamentals
5.28 Neurofibromatosis is an autosomal dominant disorder inherited on human chromosome. Part of the analysis ma...
Genetic Analysis: An Integrated Approach (3rd Edition)
Starting with 10 bacterial cells per milliliter in a sufficient amount of complete culture medium with a 1-hour...
Microbiology with Diseases by Body System (5th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
The genes dumpy (dp), clot (cl), and apterous (ap) are linked on chromosome II of Drosophila. In a series of tw...
Concepts of Genetics (12th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forwardA U-tube open at both ends is partially filled with water (Fig. P15.67a). Oil having a density 750 kg/m3 is then poured into the right arm and forms a column L = 5.00 cm high (Fig. P15.67b). (a) Determine the difference h in the heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion while air is blown across the top of the left arm until the surfaces of the two liquids are at the same height (Fig. P15.67c). Determine the speed of the air being blown across the left arm. Take the density of air as constant at 1.20 kg/m3.arrow_forward(a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forward
- A large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forwardThe left ventricle of a resting adult's heart pumps blood at a flow rate of 83.0 cm3/s , increasing its pressure by 110 mm Hg, its speed from zero to 30.0 cm/s, and its height by 5.00 cm. (All cumbers are averaged over the entire heartbeat) Calculate the total power output of left ventricle. Note that most of the power is used to increase blood pressure.arrow_forward(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assuming that all other factors remain constant. (b) What increase in flow is obtained from a 5.00% increase in radius, again assuming all other factors remain constant?arrow_forward
- An ideal fluid flows through a horizontal pipe whose diameter varies along its length. Measurements would indicate that the sum of the kinetic energy per unit volume and pressure at different sections of the pipe would (a) decrease as the pipe diameter increases, (b) increase as the pipe diameter increases, (c) increase as the pipe diameter decreases, (d) decrease as the pipe diameter decreases, or (e) remain the same as the pipe diameter changes.arrow_forwardA spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forward
- Review. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forwardWhat is the greatest average speed of blood flow at 37° C in an artery of radius 2.00 mm if the flow is to remain laminar? What is the corresponding flow rate? Take the density of blood to be 1025 kg/m3.arrow_forwardA tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY