Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path. ∫ C 3 ( x − y ) d s C : r ( t ) = t i + ( 2 − t ) j 0 ≤ t ≤ 2
Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path. ∫ C 3 ( x − y ) d s C : r ( t ) = t i + ( 2 − t ) j 0 ≤ t ≤ 2
Solution Summary: The author calculates the value of the line integral displaystyleundersetCint3(x-y)ds along the path.
Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path.
∫
C
3
(
x
−
y
)
d
s
C
:
r
(
t
)
=
t
i
+
(
2
−
t
)
j
0
≤
t
≤
2
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
A 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.
Explain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY