Lateral Surface Area In Exercises 65-72, find the area of the lateral surface (see figure) over the curve C in the xy-plane and under the surface z = f ( x , y ) where Lateral surface area = ∫ C f ( x , y ) d s . f ( x , y ) = x 2 − y 2 + 4 , C : x 2 + y 2 = 4
Lateral Surface Area In Exercises 65-72, find the area of the lateral surface (see figure) over the curve C in the xy-plane and under the surface z = f ( x , y ) where Lateral surface area = ∫ C f ( x , y ) d s . f ( x , y ) = x 2 − y 2 + 4 , C : x 2 + y 2 = 4
Solution Summary: The author calculates the value of the lateral surface over the curve C in xy -plane. The parametrization form is r(t)=2mathrmco
Lateral Surface Area In Exercises 65-72, find the area of the lateral surface (see figure) over the curve C in the xy-plane and under the surface
z
=
f
(
x
,
y
)
where Lateral surface
area
=
∫
C
f
(
x
,
y
)
d
s
.
a
->
f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem)
Muslim_maths
Use Green's Theorem to evaluate F. dr, where
F = (√+4y, 2x + √√)
and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to
(0,0).
Evaluate
F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line
π 1
1
segment starting at the point (8,
'
and ending at the point (3,
2
3'6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.