Lateral Surface Area In Exercises 65-72, find the area of the lateral surface (see figure) over the curve C in the xy-plane and under the surface z = f ( x , y ) where Lateral surface area = ∫ C f ( x , y ) d s . f ( x , y ) = x y , C: x 2 + y 2 = 1 line from (1, 0) to (0, 1)
Lateral Surface Area In Exercises 65-72, find the area of the lateral surface (see figure) over the curve C in the xy-plane and under the surface z = f ( x , y ) where Lateral surface area = ∫ C f ( x , y ) d s . f ( x , y ) = x y , C: x 2 + y 2 = 1 line from (1, 0) to (0, 1)
Solution Summary: The author calculates the lateral surface area over the curve C and under the given surface. The parametrization form is r(t)=mathrm
Lateral Surface Area In Exercises 65-72, find the area of the lateral surface (see figure) over the curve C in the xy-plane and under the surface
z
=
f
(
x
,
y
)
where Lateral surface
area
=
∫
C
f
(
x
,
y
)
d
s
.
f
(
x
,
y
)
=
x
y
,
C:
x
2
+
y
2
=
1
line from (1, 0) to (0, 1)
The graphs of the function F (left, in blue) and G (right, in red) are below. Answer the following questions.
F'(1)
G'(1)
F'(6)
G'(6)
1. One of the partial fractions for
2
4x²+x-9
x3+2x²-3x
2
x+1
a) x23 b) x 1½ c) x² d)
x-1
x
is
1. One of the partial fractions for
2
2
4x²+x-9
x3+2x²-3x
a) x3 b) x11 c) x² d) z
x-1
2. Identify the improper integral.
1 x
2 x
dx
a) 3x dx b) f² 3x dx
0 3-2x
0 3-2x
x
is
c) √2^:
4
√232x dx d) fo² 3x dx
1 1
0 3-2x
B. So eax dx converges to
if
:
a) O if a0 c) - 1½ ifa 0
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.