Calculus: Early Transcendental Functions
7th Edition
ISBN: 9781337552516
Author: Ron Larson, Bruce H. Edwards
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.2, Problem 14E
Evaluating a Line
In Exercises 13–-16, (a) find a piecewise smooth parametrization of the path C, and (b) evaluate
C: line segments from (0, 1) to (0, 4) and (0, 4) to (3, 3).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b) Use Green's theorem to calculate the circulation of F around the triangle with
verticcs (2, 0), (0, 3), (–2,0) oricntcd counterclockwisc where F = (2x²+3y)i+
(2.x + 3y²)j.
Show that the vector-valued function shown below describes the function of a particle moving in a circle of radius 1 centered at a point (5,5,3) and lying in the plane 3x+3y-6z = 12
Evaluate the circulation of G = xyi + zj + 4yk around a square of side 4, centered at the
origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis.
Circulation =
Jo
F. dr
=
Chapter 15 Solutions
Calculus: Early Transcendental Functions
Ch. 15.1 - Vector Field Define a vector field in the plane...Ch. 15.1 - Prob. 2ECh. 15.1 - Potential Function Describe how to find a...Ch. 15.1 - Prob. 4ECh. 15.1 - Prob. 5ECh. 15.1 - In Exercise 5-8, match the vector field with its...Ch. 15.1 - In Exercise 5-8, match the vector field with its...Ch. 15.1 - In Exercise 5-8, match the vector field with its...Ch. 15.1 - Prob. 9ECh. 15.1 - Prob. 10E
Ch. 15.1 - Prob. 11ECh. 15.1 - Prob. 12ECh. 15.1 - Sketching a Vector Field In Exercises 9-14, find F...Ch. 15.1 - Prob. 14ECh. 15.1 - Prob. 15ECh. 15.1 - Prob. 16ECh. 15.1 - Prob. 17ECh. 15.1 - Prob. 18ECh. 15.1 - Finding a Conservative Vector Field In Exercises...Ch. 15.1 - Prob. 20ECh. 15.1 - Prob. 21ECh. 15.1 - Prob. 22ECh. 15.1 - In Exercises 19-28, find the conservative vector...Ch. 15.1 - Prob. 24ECh. 15.1 - Prob. 25ECh. 15.1 - In Exercises 19-28, find the conservative vector...Ch. 15.1 - In Exercises 19-28, find the conservative vector...Ch. 15.1 - Prob. 28ECh. 15.1 - Prob. 29ECh. 15.1 - Prob. 30ECh. 15.1 - Prob. 31ECh. 15.1 - Prob. 32ECh. 15.1 - Prob. 33ECh. 15.1 - Prob. 34ECh. 15.1 - Prob. 35ECh. 15.1 - In Exercises 29-36, determine whether the vector...Ch. 15.1 - In Exercises 37-44, determine whether the vector...Ch. 15.1 - In Exercises 37-44, determine whether the vector...Ch. 15.1 - Prob. 39ECh. 15.1 - Prob. 40ECh. 15.1 - Prob. 41ECh. 15.1 - Prob. 42ECh. 15.1 - Prob. 43ECh. 15.1 - Prob. 44ECh. 15.1 - Find curl F for the vector field at the given...Ch. 15.1 - Find Curl F for the vector field at the point...Ch. 15.1 - Find Curl of the vector field F at the given point...Ch. 15.1 - Find Curl of the vector field F at the given point...Ch. 15.1 - Prob. 49ECh. 15.1 - Prob. 50ECh. 15.1 - Determine whether the vector field F is...Ch. 15.1 - Determine whether the vector field F is...Ch. 15.1 - Determine whether the vector field F is...Ch. 15.1 - Determine whether the vector field F is...Ch. 15.1 - Determine whether the vector field F is...Ch. 15.1 - Determine whether the vector field F is...Ch. 15.1 - Prob. 57ECh. 15.1 - Prob. 58ECh. 15.1 - Prob. 59ECh. 15.1 - Prob. 60ECh. 15.1 - Find the divergence of the vector field at the...Ch. 15.1 - Find the divergence of the vector field at the...Ch. 15.1 - Prob. 63ECh. 15.1 - Prob. 64ECh. 15.1 - Prob. 65ECh. 15.1 - Prob. 66ECh. 15.1 - Prob. 67ECh. 15.1 - Prob. 68ECh. 15.1 - Prob. 69ECh. 15.1 - In Exercise 69 and 70, find curl (FxG)=x(FxG)...Ch. 15.1 - Prob. 71ECh. 15.1 - In Exercises 71 and 72, curl (curlF)=x(xF)...Ch. 15.1 - Prob. 73ECh. 15.1 - Divergence of a Cross Product In Exercises 73 and...Ch. 15.1 - Prob. 75ECh. 15.1 - Prob. 76ECh. 15.1 - In parts (a) - (h), prove the property for vector...Ch. 15.1 - Prob. 78ECh. 15.2 - CONCEPT CHECK Line integral What is the physical...Ch. 15.2 - Prob. 2ECh. 15.2 - Finding a Piecewise Smooth Parametrization In...Ch. 15.2 - Prob. 4ECh. 15.2 - Finding a Piecewise Smooth Parametrization In...Ch. 15.2 - Prob. 6ECh. 15.2 - Finding a Piecewise Smooth Parametrization In...Ch. 15.2 - Finding a Piecewise Smooth Parametrization In...Ch. 15.2 - Evaluating a Line Integral In Exercises 9-12, (a)...Ch. 15.2 - Evaluating a Line Integral In Exercises 9-12, (a)...Ch. 15.2 - Prob. 11ECh. 15.2 - Prob. 12ECh. 15.2 - Prob. 13ECh. 15.2 - Evaluating a Line Integral In Exercises 13-16, (a)...Ch. 15.2 - Evaluating a Line Integral In Exercises 13-16, (a)...Ch. 15.2 - Evaluating a Line Integral In Exercises 13-16, (a)...Ch. 15.2 - Prob. 17ECh. 15.2 - Prob. 18ECh. 15.2 - Evaluating a Line Integral In Exercises 19-22,...Ch. 15.2 - Evaluating a Line Integral In Exercises 19-22,...Ch. 15.2 - Evaluating a Line Integral In Exercises 19-22,...Ch. 15.2 - Evaluating a Line Integral In Exercises 19-22,...Ch. 15.2 - Prob. 23ECh. 15.2 - Mass In Exercises 23 and 24, find the total mass...Ch. 15.2 - Prob. 25ECh. 15.2 - Prob. 26ECh. 15.2 - Prob. 27ECh. 15.2 - Mass In Exercises 25-28, find the total mass of...Ch. 15.2 - Evaluating a Line Integral of a Vector Field In...Ch. 15.2 - Evaluating a Line Integral of a Vector Field In...Ch. 15.2 - Prob. 31ECh. 15.2 - Prob. 32ECh. 15.2 - Prob. 33ECh. 15.2 - Evaluating a Line Integral of a Vector Field In...Ch. 15.2 - Prob. 35ECh. 15.2 - Prob. 36ECh. 15.2 - Prob. 37ECh. 15.2 - Work In Exercises 37-42, find the work done by the...Ch. 15.2 - Prob. 39ECh. 15.2 - Work In Exercises 37-42, find the work done by the...Ch. 15.2 - Prob. 41ECh. 15.2 - Work In Exercises 37-42, find the work done by the...Ch. 15.2 - Work In Exercises 43-46, determine whether the...Ch. 15.2 - Work In Exercises 43-46, determine whether the...Ch. 15.2 - Prob. 45ECh. 15.2 - Prob. 46ECh. 15.2 - Prob. 47ECh. 15.2 - Prob. 48ECh. 15.2 - Prob. 49ECh. 15.2 - Prob. 50ECh. 15.2 - Prob. 51ECh. 15.2 - Prob. 52ECh. 15.2 - Evaluating a Line Integral in Differential Form In...Ch. 15.2 - Prob. 54ECh. 15.2 - Prob. 55ECh. 15.2 - Prob. 56ECh. 15.2 - Evaluating a Line Integral in Differential Form In...Ch. 15.2 - Evaluating a Line Integral in Differential Form In...Ch. 15.2 - Prob. 59ECh. 15.2 - Prob. 60ECh. 15.2 - Prob. 61ECh. 15.2 - Evaluating a Line Integral in Differential Form In...Ch. 15.2 - Prob. 63ECh. 15.2 - Prob. 64ECh. 15.2 - Prob. 65ECh. 15.2 - Lateral Surface Area In Exercises 65-72, find the...Ch. 15.2 - Prob. 67ECh. 15.2 - Prob. 68ECh. 15.2 - Prob. 69ECh. 15.2 - Lateral Surface Area In Exercises 65-72, find the...Ch. 15.2 - Prob. 71ECh. 15.2 - Lateral Surface Area In Exercises 65-72, find the...Ch. 15.2 - Prob. 73ECh. 15.2 - Prob. 74ECh. 15.2 - Prob. 75ECh. 15.2 - Prob. 76ECh. 15.2 - Prob. 77ECh. 15.2 - Prob. 78ECh. 15.2 - Work Find the work done by a person weighing 175...Ch. 15.2 - Prob. 80ECh. 15.2 - Prob. 81ECh. 15.2 - Prob. 82ECh. 15.2 - Prob. 83ECh. 15.2 - Prob. 84ECh. 15.2 - Prob. 85ECh. 15.2 - Prob. 86ECh. 15.2 - Prob. 87ECh. 15.3 - Fundamental Theorem of Line integrals Explain how...Ch. 15.3 - Prob. 2ECh. 15.3 - Prob. 3ECh. 15.3 - Prob. 4ECh. 15.3 - Prob. 5ECh. 15.3 - Prob. 6ECh. 15.3 - Prob. 7ECh. 15.3 - Line Integral of a Conservative Vector Field In...Ch. 15.3 - In Exercises 9-18, evaluate CFdr using the...Ch. 15.3 - Prob. 10ECh. 15.3 - In Exercises 9-18, evaluate CFdr using the...Ch. 15.3 - Prob. 12ECh. 15.3 - Prob. 13ECh. 15.3 - Prob. 14ECh. 15.3 - Prob. 15ECh. 15.3 - Prob. 16ECh. 15.3 - In Exercises 9-18, evaluate CFdr using the...Ch. 15.3 - Prob. 18ECh. 15.3 - Prob. 19ECh. 15.3 - Prob. 20ECh. 15.3 - Prob. 21ECh. 15.3 - Finding Work in a Conservative Force Field In...Ch. 15.3 - Prob. 23ECh. 15.3 - Evaluating a Line Integral In Exercises 23-32,...Ch. 15.3 - Evaluating a Line Integral In Exercises 23-32,...Ch. 15.3 - Evaluating a Line Integral In Exercises 23-32,...Ch. 15.3 - Prob. 27ECh. 15.3 - Evaluating a Line Integral In exercises 23-32,...Ch. 15.3 - Prob. 29ECh. 15.3 - Prob. 30ECh. 15.3 - Prob. 31ECh. 15.3 - Prob. 32ECh. 15.3 - Prob. 33ECh. 15.3 - Prob. 34ECh. 15.3 - Prob. 35ECh. 15.3 - Prob. 36ECh. 15.3 - Prob. 37ECh. 15.3 - Prob. 38ECh. 15.3 - Prob. 39ECh. 15.3 - Prob. 40ECh. 15.3 - Prob. 41ECh. 15.3 - Prob. 42ECh. 15.3 - Prob. 43ECh. 15.3 - Prob. 44ECh. 15.3 - Prob. 45ECh. 15.3 - Prob. 46ECh. 15.3 - Prob. 47ECh. 15.3 - Prob. 48ECh. 15.3 - Prob. 49ECh. 15.4 - CONCEPT CHECK Writing What does it mean for a...Ch. 15.4 - Prob. 2ECh. 15.4 - Prob. 3ECh. 15.4 - Prob. 4ECh. 15.4 - Prob. 5ECh. 15.4 - Verifying Greens Theorem In Exercises 5-8, verify...Ch. 15.4 - Prob. 7ECh. 15.4 - Verifying Greens Theorem In Exercises 5-8, verify...Ch. 15.4 - Prob. 9ECh. 15.4 - Prob. 10ECh. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Prob. 15ECh. 15.4 - Prob. 16ECh. 15.4 - Prob. 17ECh. 15.4 - Prob. 18ECh. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Prob. 20ECh. 15.4 - Prob. 21ECh. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Evaluating a Line Integral Using Greens Theorem In...Ch. 15.4 - Work In Exercises 25-28, use Greens Theorem to...Ch. 15.4 - Prob. 26ECh. 15.4 - Prob. 27ECh. 15.4 - Work In Exercises 25-28, use Greens Theorem to...Ch. 15.4 - Prob. 29ECh. 15.4 - Prob. 30ECh. 15.4 - Prob. 31ECh. 15.4 - Prob. 32ECh. 15.4 - Prob. 33ECh. 15.4 - Using Greens Theorem to Verify a Formula In...Ch. 15.4 - Centroid In Exercises 35-38, use the results of...Ch. 15.4 - Prob. 36ECh. 15.4 - Prob. 37ECh. 15.4 - Prob. 38ECh. 15.4 - Prob. 39ECh. 15.4 - Area In Exercises 39-42, use the result of...Ch. 15.4 - Area In Exercises 39-42, use the result of...Ch. 15.4 - Area In Exercises 39-42, use the result of...Ch. 15.4 - Prob. 43ECh. 15.4 - Prob. 44ECh. 15.4 - Greens Theorem: Region with a Hole Let R be the...Ch. 15.4 - Greens Theorem: Region with a Hole Let R be the...Ch. 15.4 - Prob. 47ECh. 15.4 - Prob. 48ECh. 15.4 - Prob. 49ECh. 15.4 - Prob. 50ECh. 15.4 - Prob. 51ECh. 15.4 - Proof In Exercises 51 and 52, prove the identity,...Ch. 15.4 - Prob. 53ECh. 15.4 - Prob. 54ECh. 15.5 - Prob. 1ECh. 15.5 - Prob. 2ECh. 15.5 - Matching In Exercises 3-8, match the vector-valued...Ch. 15.5 - Prob. 4ECh. 15.5 - Prob. 5ECh. 15.5 - Prob. 6ECh. 15.5 - Prob. 7ECh. 15.5 - Prob. 8ECh. 15.5 - Prob. 9ECh. 15.5 - Prob. 10ECh. 15.5 - Prob. 11ECh. 15.5 - Prob. 12ECh. 15.5 - Prob. 13ECh. 15.5 - Prob. 14ECh. 15.5 - Graphing a Parametric Surface In Exercises 13-16,...Ch. 15.5 - Prob. 16ECh. 15.5 - Prob. 17ECh. 15.5 - Prob. 18ECh. 15.5 - Prob. 19ECh. 15.5 - Prob. 20ECh. 15.5 - Prob. 21ECh. 15.5 - Prob. 22ECh. 15.5 - Prob. 23ECh. 15.5 - Prob. 24ECh. 15.5 - Prob. 25ECh. 15.5 - Representing a Surface Parametrically In Exercises...Ch. 15.5 - Prob. 27ECh. 15.5 - Prob. 28ECh. 15.5 - Prob. 29ECh. 15.5 - Prob. 30ECh. 15.5 - Prob. 31ECh. 15.5 - Prob. 32ECh. 15.5 - Prob. 33ECh. 15.5 - Prob. 34ECh. 15.5 - Prob. 35ECh. 15.5 - Prob. 36ECh. 15.5 - Prob. 37ECh. 15.5 - Prob. 38ECh. 15.5 - Prob. 39ECh. 15.5 - Prob. 40ECh. 15.5 - Prob. 41ECh. 15.5 - Prob. 42ECh. 15.5 - Prob. 43ECh. 15.5 - Prob. 44ECh. 15.5 - Prob. 45ECh. 15.5 - Prob. 46ECh. 15.5 - Prob. 47ECh. 15.5 - Prob. 48ECh. 15.5 - Prob. 49ECh. 15.5 - Prob. 50ECh. 15.5 - Prob. 51ECh. 15.5 - Prob. 52ECh. 15.5 - Prob. 53ECh. 15.5 - Hyperboloid Find a vector-valued function for the...Ch. 15.5 - Area Use a computer algebra system to graph one...Ch. 15.5 - Prob. 56ECh. 15.5 - Prob. 57ECh. 15.5 - Prob. 58ECh. 15.6 - Prob. 1ECh. 15.6 - Prob. 2ECh. 15.6 - Prob. 3ECh. 15.6 - Prob. 4ECh. 15.6 - Prob. 5ECh. 15.6 - Prob. 6ECh. 15.6 - Prob. 7ECh. 15.6 - Prob. 8ECh. 15.6 - Prob. 9ECh. 15.6 - Prob. 10ECh. 15.6 - Prob. 11ECh. 15.6 - Prob. 12ECh. 15.6 - Prob. 13ECh. 15.6 - Mass In Exercise 13-14, find the mass of the...Ch. 15.6 - Prob. 15ECh. 15.6 - Prob. 16ECh. 15.6 - Prob. 17ECh. 15.6 - Prob. 18ECh. 15.6 - Prob. 19ECh. 15.6 - Evaluating a Surface Integral In Exercises 19-24,...Ch. 15.6 - Prob. 21ECh. 15.6 - Evaluating a Surface Integral In Exercises 19-24,...Ch. 15.6 - Evaluating a Surface Integral In Exercises 19-24,...Ch. 15.6 - Prob. 24ECh. 15.6 - Prob. 25ECh. 15.6 - Prob. 26ECh. 15.6 - Evaluating a Flux Integral In Exercises 25-30,...Ch. 15.6 - Prob. 28ECh. 15.6 - Prob. 29ECh. 15.6 - Evaluating a Flux Integral In Exercises 25-30,...Ch. 15.6 - Prob. 31ECh. 15.6 - Prob. 32ECh. 15.6 - Prob. 33ECh. 15.6 - Prob. 34ECh. 15.6 - Prob. 35ECh. 15.6 - Prob. 36ECh. 15.6 - Prob. 37ECh. 15.6 - Moments of Inertia In Exercises 37-40, use the...Ch. 15.6 - Prob. 39ECh. 15.6 - Moments of Inertia In Exercises 37-40, use the...Ch. 15.6 - Prob. 41ECh. 15.6 - Prob. 42ECh. 15.6 - Prob. 43ECh. 15.7 - CONCEPT CHECK Using Different Methods Suppose that...Ch. 15.7 - Classifying a Point in a Vector Field How do you...Ch. 15.7 - Verifying the Divergence Theorem In Exercises 3-8,...Ch. 15.7 - Verifying the Divergence Theorem In Exercises 3-8,...Ch. 15.7 - Verifying the Divergence Theorem In Exercises 3-8,...Ch. 15.7 - Verifying the Divergence Theorem In Exercises 3-8,...Ch. 15.7 - Prob. 7ECh. 15.7 - Verifying the Divergence Theorem In Exercises 3-8,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Prob. 13ECh. 15.7 - Prob. 14ECh. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Using the Divergence Theorem In Exercises 9-18,...Ch. 15.7 - Classifying a Point In Exercises 19-22, a vector...Ch. 15.7 - Classifying a Point In Exercises 19-22, a vector...Ch. 15.7 - Classifying a Point In Exercises 19-22, a vector...Ch. 15.7 - Prob. 22ECh. 15.7 - Prob. 23ECh. 15.7 - Classifying a Point In Exercises 19-22, a vector...Ch. 15.7 - EXPLORING CONCEPTS Closed Surface What is the...Ch. 15.7 - Prob. 26ECh. 15.7 - Prob. 27ECh. 15.7 - Prob. 28ECh. 15.7 - Prob. 29ECh. 15.7 - Prob. 30ECh. 15.7 - Prob. 31ECh. 15.7 - Prob. 32ECh. 15.8 - Prob. 1ECh. 15.8 - Prob. 2ECh. 15.8 - Prob. 3ECh. 15.8 - Verifying Stokess Theorem In Exercises 3-6, verify...Ch. 15.8 - Verifying Stokess Theorem In Exercises 3-6, verify...Ch. 15.8 - Verifying Stokes Theorem In Exercises 3-6, verify...Ch. 15.8 - Using Stokess Theorem In Exercises 7-16, use...Ch. 15.8 - Prob. 8ECh. 15.8 - Using Stokess Theorem In Exercises 7-16, use...Ch. 15.8 - Prob. 10ECh. 15.8 - Prob. 11ECh. 15.8 - Using Stokess Theorem In Exercises 7-16, use...Ch. 15.8 - Using Stokess Theorem In Exercises 7-16, use...Ch. 15.8 - Prob. 14ECh. 15.8 - Prob. 15ECh. 15.8 - Prob. 16ECh. 15.8 - Prob. 17ECh. 15.8 - Prob. 18ECh. 15.8 - Prob. 19ECh. 15.8 - Prob. 20ECh. 15.8 - Prob. 21ECh. 15 - Sketching a Vector Field In Exercises 1 and 2,...Ch. 15 - Sketching a Vector Field In Exercises 1 and 2,...Ch. 15 - Prob. 3RECh. 15 - Prob. 4RECh. 15 - Prob. 5RECh. 15 - Prob. 6RECh. 15 - Prob. 7RECh. 15 - Prob. 8RECh. 15 - Prob. 9RECh. 15 - Prob. 10RECh. 15 - Prob. 11RECh. 15 - Prob. 12RECh. 15 - Prob. 13RECh. 15 - Prob. 14RECh. 15 - Prob. 15RECh. 15 - Prob. 16RECh. 15 - Prob. 17RECh. 15 - Prob. 18RECh. 15 - Prob. 19RECh. 15 - Prob. 20RECh. 15 - Prob. 21RECh. 15 - Prob. 22RECh. 15 - Prob. 23RECh. 15 - Prob. 24RECh. 15 - Prob. 25RECh. 15 - Prob. 26RECh. 15 - Prob. 27RECh. 15 - Prob. 28RECh. 15 - Prob. 29RECh. 15 - Prob. 30RECh. 15 - Prob. 31RECh. 15 - Prob. 32RECh. 15 - Prob. 33RECh. 15 - Prob. 34RECh. 15 - Prob. 35RECh. 15 - Prob. 36RECh. 15 - Prob. 37RECh. 15 - Prob. 38RECh. 15 - Prob. 39RECh. 15 - Prob. 40RECh. 15 - Prob. 41RECh. 15 - Prob. 42RECh. 15 - Prob. 43RECh. 15 - Lateral Surface Area In Exercises 43 and44, find...Ch. 15 - Prob. 45RECh. 15 - Prob. 46RECh. 15 - Prob. 47RECh. 15 - Prob. 48RECh. 15 - Using the Fundamental Theorem of line Integrals In...Ch. 15 - Prob. 50RECh. 15 - Prob. 51RECh. 15 - Prob. 52RECh. 15 - Prob. 53RECh. 15 - Prob. 54RECh. 15 - Prob. 55RECh. 15 - Prob. 56RECh. 15 - Prob. 57RECh. 15 - Prob. 58RECh. 15 - Work In Exercises 59 and 60, use Greens Theorem to...Ch. 15 - Work In Exercises 25-28, use Greens Theorem to...Ch. 15 - Prob. 61RECh. 15 - Prob. 62RECh. 15 - Prob. 63RECh. 15 - Prob. 64RECh. 15 - Prob. 65RECh. 15 - Prob. 66RECh. 15 - Prob. 67RECh. 15 - Prob. 68RECh. 15 - Prob. 69RECh. 15 - Prob. 70RECh. 15 - Prob. 71RECh. 15 - Prob. 72RECh. 15 - Prob. 73RECh. 15 - Prob. 74RECh. 15 - Prob. 75RECh. 15 - Prob. 76RECh. 15 - Prob. 77RECh. 15 - Prob. 78RECh. 15 - Prob. 79RECh. 15 - Prob. 80RECh. 15 - Prob. 81RECh. 15 - Prob. 82RECh. 15 - Using Stokess Theorem In Exercises 83 and 84, use...Ch. 15 - Prob. 84RECh. 15 - Prob. 85RECh. 15 - Prob. 86RECh. 15 - Heat Flux Consider a single heat source located at...Ch. 15 - Prob. 2PSCh. 15 - Prob. 3PSCh. 15 - Moments of Inertia Find the moments of inertia for...Ch. 15 - Prob. 5PSCh. 15 - Prob. 6PSCh. 15 - Prob. 7PSCh. 15 - Prob. 8PSCh. 15 - Prob. 9PSCh. 15 - Prob. 10PSCh. 15 - Area and Work How does the area of the ellipse...Ch. 15 - Prob. 12PS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (5) Let ß be the vector-valued function 3u ß: (-2,2) × (0, 2π) → R³, B(U₁₂ v) = { 3u² 4 B (0,7), 0₁B (0,7), 0₂B (0,7) u cos(v) VI+ u², sin(v), (a) Sketch the image of ß (i.e. plot all values ß(u, v), for (u, v) in the domain of ß). (b) On the sketch in part (a), indicate (i) the path obtained by holding v = π/2 and varying u, and (ii) the path obtained by holding u = O and varying v. (c) Compute the following quantities: (d) Draw the following tangent vectors on your sketch in part (a): X₁ = 0₁B (0₂7) B(0)¹ X₂ = 0₂ß (0,7) p(0.4)* ' cos(v) √1+u² +arrow_forwardsketch the space curve represented by the intersection of the surfaces. Then represent the curve by a vector-valued function using the given parameter. Surface: x2+y2=4; z=x2 Parameter: x=2sin(t)arrow_forwardConsider the space curve represented by the intersection of the surfaces. Represent the curve by a vector-valued function r(t) using the given parameter. r(t) = Surfaces z = x² + 2y², x+y=0 Parameter x = tarrow_forward
- only solve b part pleasearrow_forward4. Consider the vector function r(z, y) (r, y, r2 +2y"). (a) Re-write this vector function as surface function in the form f(1,y). (b) Describe and draw the shape of the surface function using contour lines and algebraic analysis as needed. Explain the contour shapes in all three orthogonal directions and explain and label all intercepts as needed. (c) Consider the contour of the surface function on the plane z= for this contour in vector form. 0. Write the general equationarrow_forwardFind the space curve represented by the intersection of the surfaces. Then represent the curve by a vector-valued function using the given parameter (Use technology to sketch) x2 + y? + z? = 10, x + y = 4 x = 2 + sin (t)arrow_forward
- Subject differential geometry Let X(u,v)=(vcosu,vsinu,u) be the coordinate patch of a surface of M. A) find a normal and tangent vector field of M on patch X B) q=(1,0,1) is the point on this patch?why? C) find the tangent plane of the TpM at the point p=(0,0,0) of Marrow_forwardFind a piecewise smooth parametrization of the path C (the edges of the triangle in space with vertices: (0,0,0), (0, 1,0), and (0,1,1)). Then evaluate the line integral √(2x² + y² − 2) ds. -arrow_forwardecce 5 W 6 [1₂] (u, v) = 11 - U2 V2? 3 Consider u = # E D C (cu, v) = c(u, v) for any scalar c (u, v) = − (v, u) < Previous O (v, v) ≥ 0 for all v € R² (u, v) defines an inner product on R² $ 4 DEC R and v = F % - [5] 5 G Search or type URL T G A 6 MacBook Pro Y Which of the following is true for H & 7 U *00 8 J + 1 ( 9 < K Next ▸ 8 O ) 0 L € P B + ..arrow_forward
- Let F = -9zi+ (xe#z– 2xe**)}+ 12 k. Find f, F·dĀ, and let S be the portion of the plane 2x + 3z = 6 that lies in the first octant such that 0 < y< 4 (see figure to the right), oriented upward. Z Explain why the formula F · A cannot be used to find the flux of F through the surface S. Please be specific and use a complete sentence.arrow_forwardQuestion2arrow_forward(a) Find an affine change of coordinates that takes the unit square with vertices in the uv-plane to the rectangle with vertices in the xy-plane. X = : x(u, v) = y = y(u, v) = P* = (0,0), Q* = (1,0), R* = (0, 1), S* = (1, 1) d(x, y) |Kur p| = |det d(u, v) P = (−3, 4), Q = (−1,4), R = (−3, 7), S = (−1,7) (b) Find the absolute value of the determinant of the Jacobian for this change of coordinates. IIarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY