Essential Organic Chemistry (3rd Edition)
Essential Organic Chemistry (3rd Edition)
3rd Edition
ISBN: 9780321937711
Author: Paula Yurkanis Bruice
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15.2, Problem 11P

(a)

Interpretation Introduction

Interpretation:

The polymerization of 2,2-dimethyloxirane should be derived by anionic mechanism.

Concept Introduction:

Anionic polymerization: Initiator will be a nucleophile which reacts with the monomer to form a propagating site that is an anion and the initiator can be compounds like sodium amide or butyllithium.

Nucleophile will attack on the alkene and the alkene contains a substituent that can withdraw electrons by resonance.

(b)

Interpretation Introduction

Interpretation:

The polymerization of 2,2-dimethyloxirane should be described by cationic mechanism.

Concept Introduction:

Cationic polymerization: The polymerization in which an electrophile acts as an initiator and adds to the monomer which leads to the formation of a carbocation.

The initiator widely used is a Lewis acid and in the polymerization the electrophile adds to the sp2 carbon bonded to the most number of hydrogens.

Blurred answer
Students have asked these similar questions
Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check CF3 (Choose one) OH (Choose one) H (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy
Identifying electron-donating and electron-withdrawing effects For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects Resonance Effects Overall Electron-Density CF3 O donating O donating O electron-rich O withdrawing withdrawing O no inductive effects O no resonance effects O electron-deficient O similar to benzene OCH3 Explanation Check O donating O donating ○ withdrawing withdrawing O no inductive effects no resonance effects electron-rich electron-deficient O similar to benzene Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center
The acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Pushing Electrons
    Chemistry
    ISBN:9781133951889
    Author:Weeks, Daniel P.
    Publisher:Cengage Learning
  • Text book image
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
CBSE Class 12 Chemistry || Polymers || Full Chapter || By Shiksha House; Author: Best for NEET;https://www.youtube.com/watch?v=OxdJlS0xZ0Y;License: Standard YouTube License, CC-BY