Calculus: Early Transcendentals
Calculus: Early Transcendentals
3rd Edition
ISBN: 9781464114885
Author: Jon Rogawski, Colin Adams
Publisher: W. H. Freeman
Question
Book Icon
Chapter 15.1, Problem 53E
To determine

(a)

The mathematical proof of the statement stating that using L'Hopital Rule, f(x)=exeaxx, though not defined at x = 0, can be made continuous by assigning the value f(0)=a1

Expert Solution
Check Mark

Answer to Problem 53E

Solution: The mathematical proof of the statement stating that using L'Hopital Rule, f(x)=exeaxx, though not defined at x = 0, can be made continuous by assigning the value f(0)=a1is derived.

Explanation of Solution

Explanation:

Given: f(x)=exeaxx for a>0

Calculation:

Step 1: The function f(x)=exeaxx,f(0)=a1 is continuous if limx0f(x)=f(0)=a1.

Step 2: We verify this limit using L'Hopital Rule:

limx0exeaxx=limx0ex+aeax1=1+a=a1

Therefore, f is continuous.

Conclusion: The statement stating that using L'Hopital Rule, f(x)=exeaxx, though not defined at x = 0, can be made continuous by assigning the value f(0)=a1 is mathematically proved.

To determine

(b)

The mathematical proof of the statement stating that |f(x)|ex+eax for x>1 using triangle inequality and the mathematical proof of the statement stating that I(a) converges by applying the Comparison Theorem

Expert Solution
Check Mark

Answer to Problem 53E

Solution: Both the mathematical proof of the statement stating that |f(x)|ex+eax for x>1 using triangle inequality and the mathematical proof of the statement stating that I(a) converges by applying the Comparison Theorem are derived.

Explanation of Solution

Given: x>1, I(a)=0exeaxxdx, f(x)=exeaxx, a > 0

Calculation:

Step 1: We now show that the following integral converges:

I(a)=0exeaxxdx (a>0)

Since, exeax<ex+eax then exeaxx<ex+eaxx for x > 0

If x > 1 we have,

exeaxx<ex+eaxx<ex+eax

That is for x > 1

f(x)<ex+eax

Step 2: Also, since eaxex<eax+ex we have for x > 1

eaxexx<eaxexx<eax+ex

Thus, we get

f(x)<ex+eax

Step 3: Hence, from Step 1 and Step 2, we get

0|f(x)|ex+eax

Step 4: We now show that the integral of the right hand side converges:

0(ex+eax)dx=limR0R(ex+eax)dx=limR(exeaxa|x=0R)=limR(eReaRa+e0+e0a)=limR(eReaRa+1+1a)=1+1a

Since the integral converges, we conclude from Step 3 and the Comparison Test for Improper Integral that

0(ex+eax)xdx also converges for a > 0.

Conclusion: Both the statement stating that |f(x)|ex+eax for x>1 using triangle inequality and the statement stating that I(a) converges by applying the Comparison Theorem are mathematically proved.

To determine

(c)

The mathematical proof of the equation I(a)=01aexydydx

Expert Solution
Check Mark

Answer to Problem 53E

Solution: The mathematical proof of the equation I(a)=01aexydydx is derived

Explanation of Solution

Given: I(a)=01aexydydx, a>0

Calculation:

Step 1: We compute the inner integral with respect to y:

1aexydy=1xexy|y=1a=1x(exaex.1)=exeaxx

Step 2: Hence,

I(a)=01aexydydx=0(1aexydy)dx=0(exeaxx)dx=I(a)

Conclusion: The equation I(a)=01aexydydx is mathematically proved.

To determine

(d)

By interchanging the order of integration, the mathematical proof of the equation

I(a)=lnalimT1aeTyydy

Expert Solution
Check Mark

Answer to Problem 53E

Solution: By interchanging the order of integration, the mathematical proof of the equation

I(a)=lnalimT1aeTyydy is derived.

Explanation of Solution

Given: I(a)=0T1aexydydx, a>0

Calculation:

Step 1: By the definition of the improper integral,

I(a)=limT0T1aexydydx

Step 2: We compute the double integral. Using Fubini's Theorem we may compute the iterated integral using the reversed order of integration. That is,

0T1aexydydx=1a0Texydxdy=1a(0Texydx)dy=1a(1yexy|x=0T)dy=1a(1y(eTye0.y))dy=1a1eTyydy=1adyy1aeTyydy=lny|1a1aeTyydy=lnaln11aeTyydy=lna1aeTyydy

Combining with Step 1, we get,

I(a)=lnalimT1aeTyydy

Conclusion: By interchanging the order of integration, the equation I(a)=lnalimT1aeTyydy is mathematically proved.

To determine

(e)

The mathematical proof of the statement stating the limit in I(a)=lnalimT1aeTyydy is zero by using the Comparison Theorem.

Expert Solution
Check Mark

Answer to Problem 53E

Solution: The mathematical proof of the statement stating the limit in I(a)=lnalimT1aeTyydy is zero by using the Comparison Theorem is derived.

Explanation of Solution

Given: I(a)=lnalimT1aeTyydy, a>0

Calculation:

Step 1: We consider the following possible cases:

Case 1: a1 then in the interval of integration y1. As T, we may assume that T > 0

Thus,

eTyyeT.11=eT

Hence,

01aeTyydy1aeTdy=eT(a1)

By the limit limTeT(a1)=0 and the Squeeze Theorem, we conclude that,

limT1aeTyydy=0

Case 2: 0<a<1.

Then,

1aeTyydy=a1eTyydy

and in the interval of integration ay1, therefore

eTyyeTaa(the function eTyyis decreasing).

Hence,

0a1eTyydya1eTaady=1aaeTa

By the limit limT1aaeTa=0 and the Squeeze Theorem, we conclude that

limT1aeTyy=limTa1eTyy=0

We thus showed that for all a > 0, limT1aeTyy=0

Conclusion: The statement stating the limit in I(a)=lnalimT1aeTyydy is zero by using the Comparison Theorem is mathematically proved.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Keity x२ 1. (i) Identify which of the following subsets of R2 are open and which are not. (a) A = (2,4) x (1, 2), (b) B = (2,4) x {1,2}, (c) C = (2,4) x R. Provide a sketch and a brief explanation to each of your answers. [6 Marks] (ii) Give an example of a bounded set in R2 which is not open. [2 Marks] (iii) Give an example of an open set in R2 which is not bounded. [2 Marks
2. (i) Which of the following statements are true? Construct coun- terexamples for those that are false. (a) sequence. Every bounded sequence (x(n)) nEN C RN has a convergent sub- (b) (c) (d) Every sequence (x(n)) nEN C RN has a convergent subsequence. Every convergent sequence (x(n)) nEN C RN is bounded. Every bounded sequence (x(n)) EN CRN converges. nЄN (e) If a sequence (xn)nEN C RN has a convergent subsequence, then (xn)nEN is convergent. [10 Marks] (ii) Give an example of a sequence (x(n))nEN CR2 which is located on the parabola x2 = x², contains infinitely many different points and converges to the limit x = (2,4). [5 Marks]
2. (i) What does it mean to say that a sequence (x(n)) nEN CR2 converges to the limit x E R²? [1 Mark] (ii) Prove that if a set ECR2 is closed then every convergent sequence (x(n))nen in E has its limit in E, that is (x(n)) CE and x() x x = E. [5 Marks] (iii) which is located on the parabola x2 = = x x4, contains a subsequence that Give an example of an unbounded sequence (r(n)) nEN CR2 (2, 16) and such that x(i) converges to the limit x = (2, 16) and such that x(i) # x() for any i j. [4 Marks

Chapter 15 Solutions

Calculus: Early Transcendentals

Ch. 15.1 - Prob. 5ECh. 15.1 - Prob. 6ECh. 15.1 - Prob. 7ECh. 15.1 - Prob. 8ECh. 15.1 - Prob. 9ECh. 15.1 - Prob. 10ECh. 15.1 - Prob. 11ECh. 15.1 - Prob. 12ECh. 15.1 - Prob. 13ECh. 15.1 - Prob. 14ECh. 15.1 - Prob. 15ECh. 15.1 - Prob. 16ECh. 15.1 - Prob. 17ECh. 15.1 - Prob. 18ECh. 15.1 - Prob. 19ECh. 15.1 - Prob. 20ECh. 15.1 - Prob. 21ECh. 15.1 - Prob. 22ECh. 15.1 - Prob. 23ECh. 15.1 - Prob. 24ECh. 15.1 - Prob. 25ECh. 15.1 - Prob. 26ECh. 15.1 - Prob. 27ECh. 15.1 - Prob. 28ECh. 15.1 - Prob. 29ECh. 15.1 - Prob. 30ECh. 15.1 - Prob. 31ECh. 15.1 - Prob. 32ECh. 15.1 - Prob. 33ECh. 15.1 - Prob. 34ECh. 15.1 - Prob. 35ECh. 15.1 - Prob. 36ECh. 15.1 - Prob. 37ECh. 15.1 - Prob. 38ECh. 15.1 - Prob. 39ECh. 15.1 - Prob. 40ECh. 15.1 - Prob. 41ECh. 15.1 - Prob. 42ECh. 15.1 - Prob. 43ECh. 15.1 - Prob. 44ECh. 15.1 - Prob. 45ECh. 15.1 - Prob. 46ECh. 15.1 - Prob. 47ECh. 15.1 - Prob. 48ECh. 15.1 - Prob. 49ECh. 15.1 - Prob. 50ECh. 15.1 - Prob. 51ECh. 15.1 - Prob. 52ECh. 15.1 - Prob. 53ECh. 15.2 - Prob. 1PQCh. 15.2 - Prob. 2PQCh. 15.2 - Prob. 3PQCh. 15.2 - Prob. 4PQCh. 15.2 - Prob. 1ECh. 15.2 - Prob. 2ECh. 15.2 - Prob. 3ECh. 15.2 - Prob. 4ECh. 15.2 - Prob. 5ECh. 15.2 - Prob. 6ECh. 15.2 - Prob. 7ECh. 15.2 - Prob. 8ECh. 15.2 - Prob. 9ECh. 15.2 - Prob. 10ECh. 15.2 - Prob. 11ECh. 15.2 - Prob. 12ECh. 15.2 - Prob. 13ECh. 15.2 - Prob. 14ECh. 15.2 - Prob. 15ECh. 15.2 - Prob. 16ECh. 15.2 - Prob. 17ECh. 15.2 - Prob. 18ECh. 15.2 - Prob. 19ECh. 15.2 - Prob. 20ECh. 15.2 - Prob. 21ECh. 15.2 - Prob. 22ECh. 15.2 - Prob. 23ECh. 15.2 - Prob. 24ECh. 15.2 - Prob. 25ECh. 15.2 - Prob. 26ECh. 15.2 - Prob. 27ECh. 15.2 - Prob. 28ECh. 15.2 - Prob. 29ECh. 15.2 - Prob. 30ECh. 15.2 - Prob. 31ECh. 15.2 - Prob. 32ECh. 15.2 - Prob. 33ECh. 15.2 - Prob. 34ECh. 15.2 - Prob. 35ECh. 15.2 - Prob. 36ECh. 15.2 - Prob. 37ECh. 15.2 - Prob. 38ECh. 15.2 - Prob. 39ECh. 15.2 - Prob. 40ECh. 15.2 - Prob. 41ECh. 15.2 - Prob. 42ECh. 15.2 - Prob. 43ECh. 15.2 - Prob. 44ECh. 15.2 - Prob. 45ECh. 15.2 - Prob. 46ECh. 15.2 - Prob. 47ECh. 15.2 - Prob. 48ECh. 15.2 - Prob. 49ECh. 15.2 - Prob. 50ECh. 15.2 - Prob. 51ECh. 15.2 - Prob. 52ECh. 15.2 - Prob. 53ECh. 15.2 - Prob. 54ECh. 15.2 - Prob. 55ECh. 15.2 - Prob. 56ECh. 15.2 - Prob. 57ECh. 15.2 - Prob. 58ECh. 15.2 - Prob. 59ECh. 15.2 - Prob. 60ECh. 15.2 - Prob. 61ECh. 15.2 - Prob. 62ECh. 15.2 - Prob. 63ECh. 15.2 - Prob. 64ECh. 15.2 - Prob. 65ECh. 15.2 - Prob. 66ECh. 15.2 - Prob. 67ECh. 15.2 - Prob. 68ECh. 15.3 - Prob. 1PQCh. 15.3 - Prob. 2PQCh. 15.3 - Prob. 3PQCh. 15.3 - Prob. 1ECh. 15.3 - Prob. 2ECh. 15.3 - Prob. 3ECh. 15.3 - Prob. 4ECh. 15.3 - Prob. 5ECh. 15.3 - Prob. 6ECh. 15.3 - Prob. 7ECh. 15.3 - Prob. 8ECh. 15.3 - Prob. 9ECh. 15.3 - Prob. 10ECh. 15.3 - Prob. 11ECh. 15.3 - Prob. 12ECh. 15.3 - Prob. 13ECh. 15.3 - Prob. 14ECh. 15.3 - Prob. 15ECh. 15.3 - Prob. 16ECh. 15.3 - Prob. 17ECh. 15.3 - Prob. 18ECh. 15.3 - Prob. 19ECh. 15.3 - Prob. 20ECh. 15.3 - Prob. 21ECh. 15.3 - Prob. 22ECh. 15.3 - Prob. 23ECh. 15.3 - Prob. 24ECh. 15.3 - Prob. 25ECh. 15.3 - Prob. 26ECh. 15.3 - Prob. 27ECh. 15.3 - Prob. 28ECh. 15.3 - Prob. 29ECh. 15.3 - Prob. 30ECh. 15.3 - Prob. 31ECh. 15.3 - Prob. 32ECh. 15.3 - Prob. 33ECh. 15.3 - Prob. 34ECh. 15.3 - Prob. 35ECh. 15.3 - Prob. 36ECh. 15.3 - Prob. 37ECh. 15.3 - Prob. 38ECh. 15.3 - Prob. 39ECh. 15.3 - Prob. 40ECh. 15.3 - Prob. 41ECh. 15.3 - Prob. 42ECh. 15.3 - Prob. 43ECh. 15.3 - Prob. 44ECh. 15.4 - Prob. 1PQCh. 15.4 - Prob. 2PQCh. 15.4 - Prob. 3PQCh. 15.4 - Prob. 4PQCh. 15.4 - Prob. 1ECh. 15.4 - Prob. 2ECh. 15.4 - Prob. 3ECh. 15.4 - Prob. 4ECh. 15.4 - Prob. 5ECh. 15.4 - Prob. 6ECh. 15.4 - Prob. 7ECh. 15.4 - Prob. 8ECh. 15.4 - Prob. 9ECh. 15.4 - Prob. 10ECh. 15.4 - Prob. 11ECh. 15.4 - Prob. 12ECh. 15.4 - Prob. 13ECh. 15.4 - Prob. 14ECh. 15.4 - Prob. 15ECh. 15.4 - Prob. 16ECh. 15.4 - Prob. 17ECh. 15.4 - Prob. 18ECh. 15.4 - Prob. 19ECh. 15.4 - Prob. 20ECh. 15.4 - Prob. 21ECh. 15.4 - Prob. 22ECh. 15.4 - Prob. 23ECh. 15.4 - Prob. 24ECh. 15.4 - Prob. 25ECh. 15.4 - Prob. 26ECh. 15.4 - Prob. 27ECh. 15.4 - Prob. 28ECh. 15.4 - Prob. 29ECh. 15.4 - Prob. 30ECh. 15.4 - Prob. 31ECh. 15.4 - Prob. 32ECh. 15.4 - Prob. 33ECh. 15.4 - Prob. 34ECh. 15.4 - Prob. 35ECh. 15.4 - Prob. 36ECh. 15.4 - Prob. 37ECh. 15.4 - Prob. 38ECh. 15.4 - Prob. 39ECh. 15.4 - Prob. 40ECh. 15.4 - Prob. 41ECh. 15.4 - Prob. 42ECh. 15.4 - Prob. 43ECh. 15.4 - Prob. 44ECh. 15.4 - Prob. 45ECh. 15.4 - Prob. 46ECh. 15.4 - Prob. 47ECh. 15.4 - Prob. 48ECh. 15.4 - Prob. 49ECh. 15.4 - Prob. 50ECh. 15.4 - Prob. 51ECh. 15.4 - Prob. 52ECh. 15.4 - Prob. 53ECh. 15.4 - Prob. 54ECh. 15.4 - Prob. 55ECh. 15.4 - Prob. 56ECh. 15.4 - Prob. 57ECh. 15.4 - Prob. 58ECh. 15.4 - Prob. 59ECh. 15.4 - Prob. 60ECh. 15.5 - Prob. 1PQCh. 15.5 - Prob. 2PQCh. 15.5 - Prob. 3PQCh. 15.5 - Prob. 1ECh. 15.5 - Prob. 2ECh. 15.5 - Prob. 3ECh. 15.5 - Prob. 4ECh. 15.5 - Prob. 5ECh. 15.5 - Prob. 6ECh. 15.5 - Prob. 7ECh. 15.5 - Prob. 8ECh. 15.5 - Prob. 9ECh. 15.5 - Prob. 10ECh. 15.5 - Prob. 11ECh. 15.5 - Prob. 12ECh. 15.5 - Prob. 13ECh. 15.5 - Prob. 14ECh. 15.5 - Prob. 15ECh. 15.5 - Prob. 16ECh. 15.5 - Prob. 17ECh. 15.5 - Prob. 18ECh. 15.5 - Prob. 19ECh. 15.5 - Prob. 20ECh. 15.5 - Prob. 21ECh. 15.5 - Prob. 22ECh. 15.5 - Prob. 23ECh. 15.5 - Prob. 24ECh. 15.5 - Prob. 25ECh. 15.5 - Prob. 26ECh. 15.5 - Prob. 27ECh. 15.5 - Prob. 28ECh. 15.5 - Prob. 29ECh. 15.5 - Prob. 30ECh. 15.5 - Prob. 31ECh. 15.5 - Prob. 32ECh. 15.5 - Prob. 33ECh. 15.5 - Prob. 34ECh. 15.5 - Prob. 35ECh. 15.5 - Prob. 36ECh. 15.5 - Prob. 37ECh. 15.5 - Prob. 38ECh. 15.5 - Prob. 39ECh. 15.5 - Prob. 40ECh. 15.5 - Prob. 41ECh. 15.5 - Prob. 42ECh. 15.5 - Prob. 43ECh. 15.5 - Prob. 44ECh. 15.5 - Prob. 45ECh. 15.5 - Prob. 46ECh. 15.5 - Prob. 47ECh. 15.5 - Prob. 48ECh. 15.5 - Prob. 49ECh. 15.5 - Prob. 50ECh. 15.5 - Prob. 51ECh. 15.5 - Prob. 52ECh. 15.5 - Prob. 53ECh. 15.5 - Prob. 54ECh. 15.5 - Prob. 55ECh. 15.5 - Prob. 56ECh. 15.5 - Prob. 57ECh. 15.5 - Prob. 58ECh. 15.5 - Prob. 59ECh. 15.5 - Prob. 60ECh. 15.5 - Prob. 61ECh. 15.5 - Prob. 62ECh. 15.5 - Prob. 63ECh. 15.5 - Prob. 64ECh. 15.6 - Prob. 1PQCh. 15.6 - Prob. 2PQCh. 15.6 - Prob. 3PQCh. 15.6 - Prob. 4PQCh. 15.6 - Prob. 1ECh. 15.6 - Prob. 2ECh. 15.6 - Prob. 3ECh. 15.6 - Prob. 4ECh. 15.6 - Prob. 5ECh. 15.6 - Prob. 6ECh. 15.6 - Prob. 7ECh. 15.6 - Prob. 8ECh. 15.6 - Prob. 9ECh. 15.6 - Prob. 10ECh. 15.6 - Prob. 11ECh. 15.6 - Prob. 12ECh. 15.6 - Prob. 13ECh. 15.6 - Prob. 14ECh. 15.6 - Prob. 15ECh. 15.6 - Prob. 16ECh. 15.6 - Prob. 17ECh. 15.6 - Prob. 18ECh. 15.6 - Prob. 19ECh. 15.6 - Prob. 20ECh. 15.6 - Prob. 21ECh. 15.6 - Prob. 22ECh. 15.6 - Prob. 23ECh. 15.6 - Prob. 24ECh. 15.6 - Prob. 25ECh. 15.6 - Prob. 26ECh. 15.6 - Prob. 27ECh. 15.6 - Prob. 28ECh. 15.6 - Prob. 29ECh. 15.6 - Prob. 30ECh. 15.6 - Prob. 31ECh. 15.6 - Prob. 32ECh. 15.6 - Prob. 33ECh. 15.6 - Prob. 34ECh. 15.6 - Prob. 35ECh. 15.6 - Prob. 36ECh. 15.6 - Prob. 37ECh. 15.6 - Prob. 38ECh. 15.6 - Prob. 39ECh. 15.6 - Prob. 40ECh. 15.6 - Prob. 41ECh. 15.6 - Prob. 42ECh. 15.6 - Prob. 43ECh. 15.6 - Prob. 44ECh. 15.6 - Prob. 45ECh. 15.6 - Prob. 46ECh. 15.6 - Prob. 47ECh. 15.6 - Prob. 48ECh. 15.6 - Prob. 49ECh. 15.6 - Prob. 50ECh. 15.6 - Prob. 51ECh. 15.6 - Prob. 52ECh. 15 - Prob. 1CRECh. 15 - Prob. 2CRECh. 15 - Prob. 3CRECh. 15 - Prob. 4CRECh. 15 - Prob. 5CRECh. 15 - Prob. 6CRECh. 15 - Prob. 7CRECh. 15 - Prob. 8CRECh. 15 - Prob. 9CRECh. 15 - Prob. 10CRECh. 15 - Prob. 11CRECh. 15 - Prob. 12CRECh. 15 - Prob. 13CRECh. 15 - Prob. 14CRECh. 15 - Prob. 15CRECh. 15 - Prob. 16CRECh. 15 - Prob. 17CRECh. 15 - Prob. 18CRECh. 15 - Prob. 19CRECh. 15 - Prob. 20CRECh. 15 - Prob. 21CRECh. 15 - Prob. 22CRECh. 15 - Prob. 23CRECh. 15 - Prob. 24CRECh. 15 - Prob. 25CRECh. 15 - Prob. 26CRECh. 15 - Prob. 27CRECh. 15 - Prob. 28CRECh. 15 - Prob. 29CRECh. 15 - Prob. 30CRECh. 15 - Prob. 31CRECh. 15 - Prob. 32CRECh. 15 - Prob. 33CRECh. 15 - Prob. 34CRECh. 15 - Prob. 35CRECh. 15 - Prob. 36CRECh. 15 - Prob. 37CRECh. 15 - Prob. 38CRECh. 15 - Prob. 39CRECh. 15 - Prob. 40CRECh. 15 - Prob. 41CRECh. 15 - Prob. 42CRECh. 15 - Prob. 43CRECh. 15 - Prob. 44CRECh. 15 - Prob. 45CRECh. 15 - Prob. 46CRECh. 15 - Prob. 47CRECh. 15 - Prob. 48CRECh. 15 - Prob. 49CRECh. 15 - Prob. 50CRECh. 15 - Prob. 51CRECh. 15 - Prob. 52CRECh. 15 - Prob. 53CRECh. 15 - Prob. 54CRECh. 15 - Prob. 55CRECh. 15 - Prob. 56CRECh. 15 - Prob. 57CRECh. 15 - Prob. 58CRECh. 15 - Prob. 59CRECh. 15 - Prob. 60CRECh. 15 - Prob. 61CRE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning