Who Owns Your Genome?
John Moore, an engineer working on the Alaska oil pipeline, was diagnosed in the mid-1970s with a rare and fatal form of cancer known as hairy cell leukemia. This disease causes overproduction of one type of white blood cell known as a T lymphocyte. Moore went to the UCLA Medical Center for treatment and was examined by Dr. David Golde, who recommended that Moore’s spleen be removed in an attempt to slow down or stop the cancer. For the next 8 years, John Moore returned to UCLA for checkups. Unknown to Moore, Dr. Golde and his research assistant applied for and received a patent on a cell line and products of that cell line derived from Moore’s spleen. The cell line, named Mo, produced a protein that stimulates the growth of two types of blood cells that are important in identifying and killing cancer cells. Arrangements were made with Genetics Institute, a small start-up company, and then Sandoz Pharmaceuticals, to develop the cell line and produce the growth-stimulating protein. Moore found out about the cell line and its related patents and filed suit to claim ownership of his cells and asked for a share of the profits derived from the sale of the cells or products from the cells. Eventually, the case went through three courts, and in July 1990—n years after the case began—the California Supreme Court ruled that patients such as John Moore do not have property rights over any cells or tissues removed from their bodies that are used later to develop drugs or other commercial products.
This case was the first in the nation to establish a legal precedent for the commercial development and use of human tissue.
The National Organ Transplant Act of 1984 prevents the sale of human organs. Current laws allow the sale of human tissues and cells but do not define ownership interests of donors. Questions originally raised in the Moore case remain largely unresolved in laws and public policy. These questions are being raised in many other cases as well. Who owns fetal and adult stem-cell lines established from donors, and who has ownership of and a commercial interest in diagnostic tests developed through cell and tissue donations by affected individuals? Who benefits from new genetic technologies based on molecules, cells, or tissues contributed by patients? Are these financial, medical, and ethical benefits being distributed fairly? What can be done to ensure that risks and benefits are distributed in an equitable manner?
Gaps between technology, laws, and public policy developed with the advent of recombinant DNA technology in the 1970s, and in the intervening decades, those gaps have not been closed. These controversies are likely to continue as new developments in technology continue to outpace social consensus about their use.
Do you think that donors or patients who provide cells and/or tissues should retain ownership of their body parts or should share in any financial benefits that might derive from their use in research or commercial applications?

Trending nowThis is a popular solution!

Chapter 15 Solutions
Human Heredity: Principles and Issues
- Calculate the CFU/ml of a urine sample if 138 E. coli colonies were counted on a Nutrient Agar Plate when0.5 mls were plated on the NA plate from a 10-9 dilution tube. You must highlight and express your answerin scientific notatioarrow_forwardDon't copy off the other answer if there is anyarrow_forwardAnswerarrow_forward
- HAND DRAW There should be two proarrow_forwardMolecular Biology Question. Please help solve. Thanks. Please draw how two nucleotide triphosphates are linked together to form a dinucleotide, and label the 5' and 3' ends of the resulting dinucleotide.arrow_forwardWhat is a reversion in molecular biology?arrow_forward
- What is a gain of function mutation?arrow_forwardMolecular Biology Question: Please help. Thank you Is Southern hybridization's purpose detecting specific nucleotide sequences? How so?arrow_forwardUse the following information to answer the question(s) below. Martin Wikelski and L. Michael Romero (Body size, performance and fitness in Galápagos marine iguanas, Integrative and Comparative Biology 43 [2003]:376-86) measured the snout-to-vent (anus) length of Galápagos marine iguanas and observed the percent survival of different-sized animals, all of the same age. The graph shows the log snout-vent length (SVL, a measure of overall body size) plotted against the percent survival of these different size classes for males and females. Survival (%) 100- 80- 60- 40- 20- 0+ 1.9 T 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Log SVL (mm) 19) Examine the figure above. What type of selection for body size appears to be occurring in these marine iguanas? A) directional selection B) stabilizing selection C) disruptive selection D) You cannot determine the type of selection from the above information. 3arrow_forward
- 24) Use the following information to answer the question below. Researchers studying a small milkweed population note that some plants produce a toxin and other plants do not. They identify the gene responsible for toxin production. The dominant allele (T) codes for an enzyme that makes the toxin, and the recessive allele (t) codes for a nonfunctional enzyme that cannot produce the toxin. Heterozygotes produce an intermediate amount of toxin. The genotypes of all individuals in the population are determined (see table) and used to determine the actual allele frequencies in the population. TT 0.49 Tt 0.42 tt 0.09 Refer to the table above. Is this population in Hardy-Weinberg equilibrium? A) Yes. C) No; there are more homozygotes than expected. B) No; there are more heterozygotes than expected. D) It is impossible to tell.arrow_forward30) A B CDEFG Refer to the accompanying figure. Which of the following forms a monophyletic group? A) A, B, C, and D B) C and D C) D, E, and F D) E, F, and Garrow_forwardMolecular Biology Question. Please help with step solution and explanation. Thank you: The Polymerase Chain Reaction (PCR) reaction consists of three steps denaturation, hybridization, and elongation. Please describe what occurs in the annealing step of the PCR reaction. (I think annealing step is hybridization). What are the other two steps of PCR, and what are their functions? Next, suppose the Tm for the two primers being used are 54C for Primer A and 67C for Primer B. Regarding annealing step temperature, I have the following choices for the temperature used during the annealing step:(a) 43C (b) 49C (c) 62C (d) 73C Which temperature/temperatures should I choose? What is the corresponding correct explanation, and why would I not use the other temperatures? Have a good day!arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781337408332Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning





