
Concept explainers
(a)
Find the velocity and acceleration of point B just before the power is turned off.
(a)

Answer to Problem 15.19P
The velocity and acceleration of point B just before the power is turned off are
Explanation of Solution
Given information:
The initial speed
The radius (r) of the wheel is
The time taken (t) by the wheel and the chain coast to come to rest is
Consider the motion as uniformly decelerated motion.
Calculation:
Show the position of point A and B as shown in Figure 1.
Calculate the velocity of the point B just before the power is turned off using the relation:
Substitute
Thus, the velocity of the point B just before the power is turned off is
Calculate the uniform angular acceleration
The value of angular velocity
Substitute 0 for
Consider just before power is turned off.
The angular acceleration
Consider the normal and tangential component of the acceleration at point B are denoted by
Calculate the tangential component of acceleration of the point B using the relation:
Substitute
Calculate the normal component of acceleration of the point B using the relation:
Substitute
Neglect the effect of tangential acceleration as it is small.
Thus, the acceleration of point B just before the power is turned off is
(b)
Find the velocity and acceleration of point B just after 2.5 s.
(b)

Answer to Problem 15.19P
The velocity and acceleration of point B just after 2.5 s are
Explanation of Solution
Given information:
Calculation:
Refer Part (a).
Calculate the uniform angular velocity
The value of angular velocity
Substitute
Consider the time
Calculate the velocity of the point B using the relation:
Substitute
Thus, the velocity of point B just after 2.5 s is
Show the components of acceleration as shown in Figure 2.
Refer Figure 2.
Consider the normal and tangential component of the acceleration at point B are denoted by
Calculate the tangential component of acceleration of the point B using the relation:
Substitute
Calculate the normal component of acceleration of the point B using the relation:
Substitute
Calculate the angle
Neglect the effect of tangential acceleration as it is small.
Thus, the acceleration of point B just after 2.5 s is
Want to see more full solutions like this?
Chapter 15 Solutions
Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
- Design and assemble on the fluidsim (or a draft) the Hydraulic Drive Circuit, with the following characteristics: (a) Sequential operation, pressure, for the advance and return of the cylinders (according to the proper operation for the device) controlled by a directional 4x3 way, closed center; (b) Speed control for the cylinders, according to the load signal; (c) Pressure counterbalance for cylinder A, in order to compensate for the weight of the assembly.arrow_forwardThis is an old exam practice question. The answer is Pmax = 218.8 kN normal stress governs but why?arrow_forwardMoist air initially at T₁ = 140°C, p₁ = 4 bar, and p₁ = 50% is contained in a 2.0-m³ closed, rigid tank. The tank contents are cooled to T₂ 35°C. Step 1 Determine the temperature at which condensation begins, in °C.arrow_forward
- Air at T₁ = 24°C, p₁ = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2=7°C, p₂ = 1 bar. A single mixed stream exits at T3-17°C, p3=1 bar. Neglect kinetic and potential energy effectsarrow_forwardHand calculation of cooling loadarrow_forwardAn HEV has a 24kW battery. How many miles can it go on electricity alone at 40 mph on a flat straight road with no headwind? Assume the rolling resistance factor is 0.018 and the Coefficient of Drag (aerodynamic) is 0.29 the frontal area is 2.25m^2 and the vehicle weighs 1618 kg.arrow_forward
- As shown in the figure below, moist air at T₁ = 36°C, 1 bar, and 35% relative humidity enters a heat exchanger operating at steady state with a volumetric flow rate of 10 m³/min and is cooled at constant pressure to 22°C. Ignoring kinetic and potential energy effects, determine: (a) the dew point temperature at the inlet, in °C. (b) the mass flow rate of moist air at the exit, in kg/min. (c) the relative humidity at the exit. (d) the rate of heat transfer from the moist air stream, in kW. (AV)1, T1 P₁ = 1 bar 11 = 35% 120 T₂=22°C P2 = 1 bararrow_forwardThe inside temperature of a wall in a dwelling is 19°C. If the air in the room is at 21°C, what is the maximum relative humidity, in percent, the air can have before condensation occurs on the wall?arrow_forwardThe inside temperature of a wall in a dwelling is 19°C. If the air in the room is at 21°C, what is the maximum relative humidity, in percent, the air can have before condensation occurs on the wall?arrow_forward
- ###arrow_forwardFind the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K. Auto Controls Show solution for transform function and provide matlab code (use k(i) for for loop NO COPIED SOLUTIONSarrow_forwardThis is an old practice exam. The answer is Ta-a = 4.615 MPa max = 14.20 MPa Su = 31.24 MPa Sus = 10.15 MPa but why?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





