
(a)
Interpretation: Assign oxidation numbers to all of the elements in HSO4-
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(b)
Interpretation: Assign oxidation numbers to all of the elements in H3PO3
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(c)
Interpretation: Assign oxidation numbers to all of the elements in Cr2O72-
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(d)
Interpretation: Assign oxidation numbers to all of the elements in Na2CO3
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
EBK BASIC CHEMISTRY
- What is the significance of selecting a "representative" sample for chemical analysis, and how does this practice ensure accurate and reliable results with respect to chemical analyses?arrow_forwardIdentify and provide an explanation of the differences between homogeneous and heterogeneous sampling in the context of sampling methods.arrow_forwardГ C-RSA CHROMATOPAC CH=1 DATA 1: @CHRM1.C00 ATTEN=10 SPEED= 10.0 0.0 b.092 0.797 1.088 1.813 C-RSA CHROMATOPAC CH=1 Report No. =13 ** CALCULATION REPORT ** DATA=1: @CHRM1.000 11/03/05 08:09:52 CH PKNO TIME 1 2 0.797 3 1.088 4 1.813 AREA 1508566 4625442 2180060 HEIGHT 207739 701206 V 287554 V MK IDNO CONC NAME 18.1447 55.6339 26.2213 TOTAL 8314067 1196500 100 C-R8A CHROMATOPAC CH=1 DATA 1: @CHRM1.C00 ATTEN=10 SPEED= 10.0 0. 0 087 337. 0.841 1.150 C-R8A CHROMATOPAC CH=1 Report No. =14 DATA=1: @CHRM1.000 11/03/05 08:12:40 ** CALCULATION REPORT ** CH PKNO TIME AREA 1 3 0.841 1099933 41.15 4039778 HEIGHT MK IDNO 170372 649997¯¯¯ CONC NAME 21.4007 78.5993 TOTAL 5139711 820369 100 3 C-R8A CHROMATOPAC CH=1 DATA 1: @CHRM1.C00 ATTEN=10 SPEED= 10.0 0.100 0:652 5.856 3 1.165 C-RSA CHROMATOPAC CH-1 Report No. =15 DATA=1: @CHRM1.000 11/03/05 08:15:26 ** CALCULATION REPORT ** CH PKNO TIME AREA HEIGHT MK IDNO CONC NAME 1 3 3 0.856 4 1.165 TOTAL 1253386 4838738 175481 708024 V 20.5739 79.4261 6092124…arrow_forward
- Draw the product of the reaction shown below. Ignore small byproducts that would evaporate please.arrow_forwardRelative Abundance 20- Problems 501 (b) The infrared spectrum has a medium-intensity peak at about 1650 cm. There is also a C-H out-of-plane bending peak near 880 cm. 100- 80- 56 41 69 M(84) LL 15 20 25 30 35 55 60 65 70 75 80 85 90 m/zarrow_forwardPolyethylene furanoate is a polymer made from plant-based sources; it is used for packaging. Identify the monomer(s) used in the production of this polymer using a condensation process.arrow_forward
- Phenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





