Two waves travel on the same string. Is it possible for them to have (a) different frequencies; (b) different wavelengths; (c) different speeds; (d) different amplitudes; (c) the same frequency but different wavelengths? Explain your reasoning.
Two waves travel on the same string. Is it possible for them to have (a) different frequencies; (b) different wavelengths; (c) different speeds; (d) different amplitudes; (c) the same frequency but different wavelengths? Explain your reasoning.
Two waves travel on the same string. Is it possible for them to have (a) different frequencies; (b) different wavelengths; (c) different speeds; (d) different amplitudes; (c) the same frequency but different wavelengths? Explain your reasoning.
(a)
Expert Solution
To determine
Two waves travelling on the same string can have different frequencies or not.
Explanation of Solution
The frequency of the wave is the number of ups and down variation of wave from its mean position.
When two waves are travelling on the same string the waves get superimposed. The frequency of the waves depends upon the property of wave that can differ from one wave to another. So it is possible that two waves travelling on the same string can have different frequencies
Conclusion: Therefore, yes it is possible for two waves to have different frequencies of two waves that are travelling on the same string.
(b)
Expert Solution
To determine
Two waves travelling on the same string can have different wavelengths or not.
Explanation of Solution
The wavelength is the measuring parameter of any radiation and light.
When two waves are travelling on the same string their wavelengths gets superimposed. The frequency of any wave describes the wavelength of the waves. At every unique frequency the wavelength of the spring is also unique. So any mechanical wave that is travelling on same string can have different wavelength.
Conclusion: Therefore, yes it is possible for two waves to have different wavelength of two waves that are travelling on the same string.
(c)
Expert Solution
To determine
Two waves travelling on the same string can have different speed or not.
Explanation of Solution
The speed of any wave is the rate of travelling of wave from one medium to another.
When two waves are travelling on the same string the medium of propagation is same. For mechanical waves the product of frequency and wavelength is speed of the wave. That always has the same value for the same medium depending upon the mechanical property of the wave.
Conclusion: Therefore, no it is possible for two waves to have different speed of two waves that are travelling on the same string.
(d)
Expert Solution
To determine
Two waves travelling on the same string can have different amplitudes or not.
Explanation of Solution
The amplitude of a wave is the maximum variation of the wave from its original position.
When two waves are travelling on the same string according to different mechanical properties of the string the amplitude of the waves also varies. That means two waves can have different displacements even though they are propagating in same string.
Conclusion: Therefore, yes it is possible for two waves to have different amplitudes of two waves that are travelling on the same string.
(e)
Expert Solution
To determine
Two waves travelling on the same string can have same frequency but different wavelengths or not.
Explanation of Solution
The frequency of the wave is the number of ups and down variation of wave from its mean position and the wavelength is the measuring parameter of any radiation and light.
For any mechanical wave speed is the product of its frequency and wavelength. Since in the same propagating medium the speed cannot be changed so the product of frequency and wavelength will also be same. But for same frequency and different wavelength the product of two waves will not be same.
Conclusion: Therefore, no it is possible for two waves to have same frequency but different wavelengths that are travelling on the same string.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY