EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 98RQ
To determine

The money wasted per year.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The diameter of the ball is, D=2.62 in.

The equivalent roughness factor is, ε/D=1.5×103.

Distance travelled per year is, L=16000 miles.

Average speed of the car is, V=55 mph.

The overall efficiency is, η=0.308.

The density of the fuel is, ρfuel=50.2lbm/ft3.

The heating value of the fuel is, HV=1.47×107ftlbf/lbm.

Cost of the fuel is $4.00/gal.

Calculation:

Obtain the following properties of air:

  Density,ρair=0.07518lbm/ft3Viscosity,μair=1.227×105lbm/fts

The Reynolds number is,

  Re=ρairVDμair=(0.07518lbm/ft3)(55×1.466ft/s)(2.62/12 ft)1.227×105lbm/fts=107900

The drag coefficient for a sphere for the above Reynolds number is CD=0.505.

The drag force is,

  FD=CDAρairV22=CD(π4D2)ρairV22

The power required to overcome the resistances is,

  W˙drag=FDL=CD(π4D2)ρairV2L2

The energy provided by the fuel is,

  Ereq=W˙dragη=CD(π4D2)ρairV2L2η

The quantity of fuel required is,

  Vfuel=Ereq/HVρfuel=CD(π4D2)ρairV2L2η(HV)ρfuel=(0.505)[π4(2.62/12 ft)2][(0.07518lbm/ft3)×(55×1.466ft/s)2×(16000×5280ft)2]0.308(1.47×107ftlbf/lbm)(50.2lbm/ft3)=0.05343 ft3×7.481 gal1 ft3=0.3997 gal

The extra cost of fuel is,

  Additional Cost=Vfuel×Cost=(0.3997 gal)($4.00/gal)=$1.6

Thus, the money wasted per year is $1.6.

Since the additional cost is minimal, Jamie need not remove the tennis ball.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Using the isothermal transformation diagram for a 1.13 wt% C steel alloy (Figure 10.39), determine the final microstructure (in terms of just the microconstituents present) of a small specimen that has been subjected to the following time-temperature treatments. In each case assume that the specimen begins at 920°C (1690°F) and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. (a) Rapidly cool to 250°C (480°F), hold for 103 s, then quench to room temperature. (b) Rapidly cool to 775°C (1430°F), hold for 500 s, then quench to room temperature. (c) Rapidly cool to 400°C (750°F), hold for 500 s, then quench to room temperature. (d) Rapidly cool to 700°C (1290°F), hold at this temperature for 105 s, then quench to room temperature. (e) Rapidly cool to 650°C (1200°F), hold at this temperature for 3 s, rapidly cool to 400°C (750°F), hold for 25 s, then quench to room temperature. (f) Rapidly cool to 350°C (660°F), hold for…
How to solve this?
A start-up company wants to convert an ICE vehicle into an electric vehicle with the following specification. Power:  250 (HP) horsepower, (note: 1HP = 745 W) Range: 300-miles Fuel economy: 33.5 kilometers per gallon of gasoline. Efficiency of the ICE: 25% Energy Conversion: One gallon of gasoline at 100% efficiency is equal to 33.5 kWh/gallon).     a)Calculate the EV consumption rate as Wh/km and find the total energy of the battery pack in KWh to replace the internal combustion engine.                                                                                             b)Design an 8-module battery pack for this full electric vehicle without compromising its range and performance (power). Use commercially available cylindrical cells lithium cell with 20Ah capacity and 3.125 V average voltage. Cell dimensions are 5cm diameter and 10 cm height. The electric motor requires 250 V input that will be provided directly from the battery pack, Report the configuration of each module in…

Chapter 15 Solutions

EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN

Ch. 15 - Prob. 11PCh. 15 - What is the difference between skin friction drag...Ch. 15 - Prob. 13PCh. 15 - What is the effect of streamlining on (a) friction...Ch. 15 - What is flow separation? What causes it? What is...Ch. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - The resultant of the pressure and wall shear...Ch. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - A submarine can be treated as an ellipsoid with a...Ch. 15 - Prob. 29PCh. 15 - During major windstorms, high vehicles such as RVs...Ch. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - Prob. 46PCh. 15 - Prob. 48PCh. 15 - Prob. 49PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 56PCh. 15 - Prob. 57PCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 60PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - A 2-m-long, 0.2-m-diameter cylindrical pine log...Ch. 15 - Prob. 64PCh. 15 - Prob. 65PCh. 15 - Prob. 66PCh. 15 - Prob. 67PCh. 15 - Prob. 68PCh. 15 - Prob. 69PCh. 15 - Prob. 70PCh. 15 - Prob. 71PCh. 15 - Prob. 72PCh. 15 - What is induced drag on wings? Can induced drag be...Ch. 15 - Prob. 74PCh. 15 - Prob. 75PCh. 15 - Prob. 76PCh. 15 - Prob. 77PCh. 15 - Consider an airplane whose takeoff speed is 220...Ch. 15 - Prob. 79PCh. 15 - Prob. 80PCh. 15 - Prob. 82PCh. 15 - Prob. 83PCh. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 86RQCh. 15 - A 1.2-m-external-diameter spherical tank is...Ch. 15 - Prob. 88RQCh. 15 - Prob. 89RQCh. 15 - Prob. 91RQCh. 15 - Prob. 92RQCh. 15 - Prob. 93RQCh. 15 - Prob. 94RQCh. 15 - Prob. 95RQCh. 15 - Prob. 96RQCh. 15 - Prob. 97RQCh. 15 - Prob. 98RQCh. 15 - Prob. 99RQCh. 15 - Prob. 100RQCh. 15 - Prob. 102RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License