Suppose that y represents the average consumer spending on television services per year (in dollars), and that x represents the number of year since 2004. a. Use the data points (2,308) and (6,408) to write a linear equation relating y to x . b. Interpret the meaning of the slope in the context of this problem. c. Interpret the meaning of the y -intercept in the context of this problem. d. Use the model from part (a) to estimate the average consumer spending on television services for the year 2007.
Suppose that y represents the average consumer spending on television services per year (in dollars), and that x represents the number of year since 2004. a. Use the data points (2,308) and (6,408) to write a linear equation relating y to x . b. Interpret the meaning of the slope in the context of this problem. c. Interpret the meaning of the y -intercept in the context of this problem. d. Use the model from part (a) to estimate the average consumer spending on television services for the year 2007.
Solution Summary: The author explains how to calculate a linear equation relating y to x by using data points.
Suppose that
y
represents the average consumer spending on television services per year (in dollars), and that
x
represents the number of year since 2004.
a. Use the data points (2,308) and (6,408) to write a linear equation relating
y
to
x
.
b. Interpret the meaning of the slope in the context of this problem.
c. Interpret the meaning of the
y
-intercept
in the context of this problem.
d. Use the model from part (a) to estimate the average consumer spending on television services for the year 2007.
8. For x>_1, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For n>_1, the nth term of the series summation from n=1 to infinity a_n is defined by a_n=g(n). If intergral 1 to infinity g(x)dx converges to 8, which of the following could be true? A) summation n=1 to infinity a_n = 6. B) summation n=1 to infinity a_n =8. C) summation n=1 to infinity a_n = 10. D) summation n=1 to infinity a_n diverges.
PLEASE SHOW ME THE RIGHT ANSWER/SOLUTION
SHOW ME ALL THE NEDDED STEP
13: If the perimeter of a square is shrinking at a rate of 8 inches per second, find the rate at which its area is changing when its area is 25 square inches.
DO NOT GIVE THE WRONG ANSWER
SHOW ME ALL THE NEEDED STEPS
11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY