Concept explainers
In straight-bevel gearing, there are some analogs to Eqs. (14-44) and (14-45) pp. 766 and 767, respectively. If we have a pinion core with a hardness of (HB)11 and we try equal power ratings, the transmitted load Wt can be made equal in all four cases. It is possible to find these relations:
Core | Case | |
Pinion | (HB)11 | (HB)12 |
Gear | (HB)21 | (HB)22 |
- (a) For carburized case-hardened gear steel with core AGMA bending strength (sat)G and pinion core strength (sat)P, show that the relationship is
This allows (HB)21 to be related to (HB)11.
- (b) Show that the AGMA contact strength of the gear case (sac)G can be related to the AGMA core bending strength of the pinion core (sat)P by
If factors of safety are applied to the transmitted load Wt, then SH =
- (c) Show that the AGMA contact strength of the gear (sac)G is related to the contact strength of the pinion (sac)P by
(a)
The relation between AGMA bending strength of gear with AGMA bending strength of pinion.
Answer to Problem 7P
The relation between AGMA bending strength of gear with AGMA bending strength of pinion is
Explanation of Solution
Write the expression for gear ratio of gear set.
Here, the gear ratio is
Write the critical expression for stress cycle factor of pinion for
Here, the stress cycle factor for pinion is
Write the critical expression for stress cycle factor of gear for
Here, the stress cycle factor for gear is
Write the expression for permissible bending stress for pinion.
Here, the permissible bending stress for pinion is
Write the expression for permissible bending stress for gear.
Here, the permissible bending stress for gear is
Substitute
Write the expression for bending stress for pinion.
Here, the bending stress in pinion is
Write the expression for bending stress for gear.
Here, the bending stress in gear is
For limiting condition bending stress in pinion is equal to allowable bending stress in pinion.
Substitute
For limiting condition bending stress in gear is equal to allowable bending stress in gear.
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, the relation between AGMA bending strength of gear with AGMA bending strength of pinion is
(b)
The AGMA contact strength of the gear case relation with the AGMA core bending strength of the pinion core.
Answer to Problem 7P
The AGMA contact strength of the gear case is related to the AGMA core bending strength of the pinion core by
Explanation of Solution
Write the expression for pitch diameter of pinion.
Here, the pitch diameter of pinion is
Write the expression for permissible bending stress for pinion.
Here, the permissible bending stress for pinion is
Write the expression for bending stress for pinion.
Here, the bending stress in pinion is
For limiting condition bending stress in pinion is equal to allowable bending stress in pinion.
Substitute
Substitute
Write the expression for reliability factor for pitting.
Here, the reliability factor for pitting is
Write the expression for permissible contact stress number for gear.
Here, the permissible contact stress for gear is
Write the expression for contact stress for gear.
Here, the contact stress in gear is
For limiting condition contact stress in gear is equal to permissible contact stress in gear.
Substitute
Substitute
Substitute
Substitute
For equal amount of transmitted load
Substitute
Conclusion:
Thus, the AGMA contact strength of the gear case is related to the AGMA core bending strength of the pinion core by
(c)
The AGMA contact strength of gear relation with contact strength of pinion.
Answer to Problem 7P
The AGMA contact strength of gear is related to contact strength of pinion by
Explanation of Solution
Write the expression for gear ratio of gear set.
Write the expression for stress cycle factor for pitting resistance for pinion.
Here, the stress cycle factor for pitting resistance for pinion is
Write the critical expression for stress cycle factor for pitting resistance for gear.
Here, the stress cycle factor for pitting resistance for gear is
Write the expression for permissible contact stress number for pinion.
Here, the permissible contact stress number for pinion is
Write the expression for permissible contact stress number for gear.
Substitute
Write the expression for contact stress for pinion.
Here, the contact stress in pinion is
Write the expression for contact stress for gear.
Here, the contact stress in gear is
For limiting condition contact stress on gear and pinion is equal to permissible contact stress on gear and pinion.
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, AGMA contact strength of gear is related to contact strength of pinion by
Want to see more full solutions like this?
Chapter 15 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³arrow_forward2/Y Y+1 2Cp Q1/ Show that Cda Az x P1 mactual Cdf Af R/T₁ 2pf(P1-P2-zxgxpf) Q2/ A simple jet carburetor has to supply 5 Kg of air per minute. The air is at a pressure of 1.013 bar and a temperature of 27 °C. Calculate the throat diameter of the choke for air flow velocity of 90 m/sec. Take velocity coefficient to be 0.8. Assume isentropic flow and the flow to be compressible. Quiz/ Determine the air-fuel ratio supplied at 5000 m altitude by a carburetor which is adjusted to give an air-fuel ratio of 14:1 at sea level where air temperature is 27 °C and pressure is 1.013 bar. The temperature of air decreases with altitude as given by the expression The air pressure decreases with altitude as per relation h = 19200 log10 (1.013), where P is in bar. State any assumptions made. t = ts P 0.0065harrow_forward36 2) Use the method of MEMBERS to determine the true magnitude and direction of the forces in members1 and 2 of the frame shown below in Fig 3.2. 300lbs/ft member-1 member-2 30° Fig 3.2. https://brightspace.cuny.edu/d21/le/content/433117/viewContent/29873977/Viewarrow_forward
- Can you solve this for me?arrow_forward5670 mm The apartment in the ground floor of three floors building in Fig. in Baghdad city. The details of walls, roof, windows and door are shown. The window is a double glazing and air space thickness is 1.3cm Poorly Fitted-with Storm Sash with wood strip and storm window of 0.6 cm glass thickness. The thickness of door is 2.5 cm. The door is Poor Installation. There are two peoples in each room. The height of room is 280 cm. assume the indoor design conditions are 25°C DBT and 50 RH, and moisture content of 8 gw/kga. The moisture content of outdoor is 10.5 gw/kga. Calculate heat gain for living room : الشقة في الطابق الأرضي من مبنى ثلاثة طوابق في مدينة بغداد يظهر في مخطط الشقة تفاصيل الجدران والسقف والنوافذ والباب. النافذة عبارة عن زجاج مزدوج وسمك الفراغ الهوائي 1.3 سم ضعيف الاحكام مع ساتر حماية مع إطار خشبي والنافذة بسماكة زجاج 0.6 سم سماكة الباب 2.5 سم. الباب هو تركيب ضعيف هناك شخصان في كل غرفة. ارتفاع الغرفة 280 سم. افترض أن ظروف التصميم الداخلي هي DBT25 و R50 ، ومحتوى الرطوبة 8…arrow_forwardHow do i solve this problem?arrow_forward
- Q4/ A compressor is driven motor by mean of a flat belt of thickness 10 mm and a width of 250 mm. The motor pulley is 300 mm diameter and run at 900 rpm and the compressor pulley is 1500 mm diameter. The shaft center distance is 1.5 m. The angle of contact of the smaller pulley is 220° and on the larger pulley is 270°. The coefficient of friction between the belt and the small pulley is 0.3, and between the belt and the large pulley is 0.25. The maximum allowable belt stress is 2 MPa and the belt density is 970 kg/m³. (a) What is the power capacity of the drive and (b) If the small pulley replaced by V-grooved pulley of diameter 300 mm, grooved angle of 34° and the coefficient of friction between belt and grooved pulley is 0.35. What will be the power capacity in this case, assuming that the diameter of the large pulley remain the same of 1500 mm.arrow_forwardYou are tasked with designing a power drive system to transmit power between a motor and a conveyor belt in a manufacturing facility as illustrated in figure. The design must ensure efficient power transmission, reliability, and safety. Given the following specifications and constraints, design drive system for this application: Specifications: Motor Power: The electric motor provides 10 kW of power at 1,500 RPM. Output Speed: The output shaft should rotate at 150 rpm. Design Decisions: Transmission ratio: Determine the necessary drive ratio for the system. Shaft Diameter: Design the shafts for both the motor and the conveyor end. Material Selection: Choose appropriate materials for the gears, shafts. Bearings: Select suitable rolling element bearings. Constraints: Space Limitation: The available space for the gear drive system is limited to a 1-meter-long section. Attribute 4 of CEP Depth of knowledge required Fundamentals-based, first principles analytical approach…arrow_forward- | العنوان In non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and v.-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: ti: final thickness V. Fig. (1) ofthrearrow_forward
- A direct extrusion operation produces the cross section shown in Fig. (2) from an aluminum billet whose diameter 160 mm and length - 700 mm. Determine the length of the extruded section at the end of the operation if the die angle -14° 60 X Fig. (2) Note: all dimensions in mm.arrow_forwardFor hot rolling processes, show that the average strain rate can be given as: = (1+5)√RdIn(+1)arrow_forward: +0 usão العنوان on to A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2R. Take: -9.81 mis ۲/۱ ostrararrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY