PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 7EAP
FIGURE EX15.7 is the Position-versus-time graph of a particle in
a. What is the phase constant?
b. What is the velocity at
c. What is
FIGURE EX15.7
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a.
b.
C.
L = 0.2 m
5⁰
M = 5 kg
What is the velocity of the pendulum at the bottom?
Draw a graph of the velocity versus time. Show the period and amplitude.
What if the velocity of the pendulum 5 seconds after the pendulum is let
go?
V2 = 30 m/s
A firetruck has a siren with a frequency of 600 Hz. It is moving to
the left at 40 m/s. At the same time a car is travelling to the right
at 30 m/s. They are 800 meters apart.
f = 600 Hz
a. What is the frequency of heard by the car?
/1 = 40 m/s
Some passengers on an ocean cruise may suffer from motion sickness as the ship rocks back and forth on the waves. At one position on the ship, passengers experience a vertical motion of amplitude 1 m with a period of 15s.a. To one significant figure, what is the maximum acceleration of the passengers during this motion?b. What fraction is this of g?
a little girl is playing with her stringball. the ball in her stringball is in uniform circular motion and makes 20 revolutions in 4 s. a. what is its period? b. what is its frequency? c. if the length of the plastic cord that holds the ball is 0.8 m, what is its speed?
Chapter 15 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 15 - Prob. 1CQCh. 15 - A pendulum on Planet X, where the value of g is...Ch. 15 - FIGURE Q15.3 shows a position-versus-time graph...Ch. 15 - FIGURE Q15.4 shows a position-versus-time graph...Ch. 15 - 5. Equation 15.25 states that . What does this...Ch. 15 - A block oscillating on a spring has an amplitude...Ch. 15 - A block oscillating on a spring has a maximum...Ch. 15 - 8. The solid disk and circular hoop in FIGURE...Ch. 15 - FIGURE Q15.9 shows the potential-energy diagram...Ch. 15 - Suppose the damping constant b of an oscillator...
Ch. 15 - Prob. 11CQCh. 15 - 12. What is the difference between the driving...Ch. 15 - An air-track glider attached to a spring...Ch. 15 - An air-track is attached to a spring. The glider...Ch. 15 - Prob. 3EAPCh. 15 - An object in SHM oscillates with a period of 4.0 s...Ch. 15 - What are the (a) amplitude, (b) frequency, and (c)...Ch. 15 - What are the (a) amplitude, (b) frequency, and (c)...Ch. 15 - FIGURE EX15.7 is the Position-versus-time graph of...Ch. 15 - FIGURE EX15.8 is the velocity-versus-time graph of...Ch. 15 - An object in simple harmonic motion has an...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An air-track glider attached to a spring...Ch. 15 - 14. A block attached to a spring with unknown...Ch. 15 - 15. A 200 g air-track glider is attached to a...Ch. 15 - A 200 g mass attached to a horizontal spring...Ch. 15 - Prob. 17EAPCh. 15 - A 1.0 kg block is attached to a spring with spring...Ch. 15 - Prob. 19EAPCh. 15 - Prob. 20EAPCh. 15 - A spring is hanging from the ceiling. Attaching a...Ch. 15 - 22. A spring with spring constant 15 N/m hangs...Ch. 15 - 23. A spring is hung from the ceiling. When a...Ch. 15 - Prob. 24EAPCh. 15 - A 200 g ball is tied to a string. It is pulled to...Ch. 15 - Prob. 26EAPCh. 15 - Prob. 27EAPCh. 15 - Prob. 28EAPCh. 15 - Prob. 29EAPCh. 15 - A 100 g mass on a 1.0-m-long string is pulled 8.0...Ch. 15 - A uniform steel bar swings from a pivot at one end...Ch. 15 - Prob. 32EAPCh. 15 - Prob. 33EAPCh. 15 - Prob. 34EAPCh. 15 - Vision is blurred if the head is vibrated at 29 Hz...Ch. 15 - Prob. 36EAPCh. 15 - Prob. 37EAPCh. 15 - a. When the displacement of a mass on a spring is...Ch. 15 - For a particle in simple harmonic motion, show...Ch. 15 - A 100g block attached to a spring with spring...Ch. 15 - A 0.300 kg oscillator has a speed of 95.4cm/s when...Ch. 15 - An ultrasonic transducer, of the type used in...Ch. 15 - Astronauts in space cannot weigh themselves by...Ch. 15 - 44. Your lab instructor has asked you to measure a...Ch. 15 - A 5.0 kg block hangs from a spring with spring...Ch. 15 - Prob. 46EAPCh. 15 - A block hangs in equilibrium from a vertical...Ch. 15 - Prob. 48EAPCh. 15 -
49. Scientists are measuring the properties of a...Ch. 15 - Prob. 50EAPCh. 15 - A compact car has a mass of 1200 kg. Assume that...Ch. 15 - Prob. 52EAPCh. 15 - Prob. 53EAPCh. 15 - Prob. 54EAPCh. 15 - Prob. 55EAPCh. 15 - Prob. 56EAPCh. 15 - Prob. 57EAPCh. 15 - A uniform rod of mass M and length L swings as a...Ch. 15 - Prob. 59EAPCh. 15 - 60. A 500 g air-track glider attached to a spring...Ch. 15 - Prob. 61EAPCh. 15 - Prob. 62EAPCh. 15 - A molecular bond can be modeled as a spring...Ch. 15 - Prob. 64EAPCh. 15 - Prob. 65EAPCh. 15 - Prob. 66EAPCh. 15 - The 15 g head of a bobble-head doll oscillates in...Ch. 15 - An oscillator with a mass of 500 g and a period of...Ch. 15 - Prob. 69EAPCh. 15 - Prob. 70EAPCh. 15 - Prob. 71EAPCh. 15 - Prob. 72EAPCh. 15 - Prob. 73EAPCh. 15 - A block ona frictionless FIGURE P15.74 to two...Ch. 15 - Prob. 75EAPCh. 15 - Prob. 76EAPCh. 15 - A solid sphere of mass M and radius R is suspended...Ch. 15 - A uniform rod of length L oscillates as a pendulum...Ch. 15 - Prob. 79EAPCh. 15 - Prob. 80EAPCh. 15 - FIGURE CP15.81 shows a 200 g uniform rod pio4ed at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The equation of motion of a simple harmonic oscillator is given by x(t) = (18.0 cm) cos (10t) (16.0 cm) sin (10t), where t is in seconds. a. Find the amplitude. b. Determine the period. c. Determine the initial phase.arrow_forwardA point on the edge of a childs pinwheel is in uniform circular motion as the wheel spins counterclockwise with a frequency of 1.53 Hz. The point is at the location x = 30.00 cm and y = 0 when a stopwatch is started to track the motion (Fig. P16.15). a. What is the period of the circular motion? b. What is the velocity of the point at the instant described? c. What is the acceleration of the point at the instant described? FIGURE P16.15 Problems 15 and 16.arrow_forwardA wooden block (m = 0.600 kg) is connected to a spring and undergoes simple harmonic motion with an amplitude of oscillation of 0.075 m. The frequency of the motion is 12.50 Hz. a. What is the spring constant? b. What is the maximum speed of the block? c. What is the speed of the block when it is 0.015 m away from the equilibrium position?arrow_forward
- (a) What is the effect on the period of a pendulum if you double its length? (b) What is the effect on the period of a pendulum if you decrease its length by 5.00%?arrow_forwardA mass on a spring undergoing simple harmonic motion completes 4.00 cycles in 14.0 s. a. What is the period of motion for this system? b. What is the frequency, in hertz, of this system? c. What is the angular frequency of this system?arrow_forwardA block of mass m = 5.94 kg is attached to a spring with spring constant k = 1592 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.150 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. a. What is the frequency of this oscillation? b. Where is the block located 3.24 s after it is released? c. What is the velocity of the mass at that time?arrow_forward
- (a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forward(a) A pendulum that has a period of 3.00000 s and that is located where the acceleration due to gravity is 9.79 m/s2 is moved to a location where the acceleration due to gravity is 9.82 m/s2. What is its new period? (b) Explain why so many digits are needed in the value for the period, based on the relation between the period and the acceleration due to gravity.arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion? (b) Can you mink of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forward
- A 1.50-kg mass is attached to a spring with spring constant 33.0 N/m on a frictionless, horizontal table. The springmass system is stretched to 4.00 cm beyond the equilibrium position of the spring and is released from rest at t = 0. a. What is the maximum speed of the 1.50-kg mass? b. What is the maximum acceleration of the 1.50-kg mass? c. What are the position, velocity, and acceleration of the 1.50-kg mass as functions of time?arrow_forwardA simple pendulum of length L hangs from the ceiling of an elevator. a. While the elevator is moving up with constant acceleration a, is the period of the pendulum affected? If so, how? b. Now suppose we hang a particle of mass m on a spring of spring constant k and attach it to the ceiling of the same elevator. How does an upward acceleration a affect the period of this simple harmonic oscillator?arrow_forwardA uniform annular ring of mass m and inner and outer radii a and b, respectively, is pivoted around an axis perpendicular to the plane of the ring at point P (Fig. P16.35). Determine its period of oscillation. FIGURE P16.35arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY