Concept explainers
The Department of Energy and the U.S. Environmental Protection Agency’s 2012 Fuel Economy Guide provides fuel efficiency data for 2012 model year cars and trucks (Department of Energy website, April 16, 2012). The file named 2012FuelEcon provides a portion of the data for 309 cars. The column labeled Manufacturer shows the name of the company that manufactured the car; the column labeled Displacement shows the engine’s displacement in liters; the column labeled Fuel shows the required or recommended type of fuel (regular or premium gasoline); the column labeled Drive identifies the type of drive (F for front wheel, R for rear wheel, and A for all wheel); and the column labeled Hwy MPG shows the fuel efficiency rating for highway driving in terms of miles per gallon.
- a. Develop an estimated regression equation that can be used to predict the fuel efficiency for highway driving given the engine’s displacement. Test for significance using α = .05.
- b. Consider the addition of the dummy variable FuelPremium, where the value of FuelPremium is 1 if the required or recommended type of fuel is premium gasoline and 0 if the type of fuel is regular gasoline. Develop the estimated regression equation that can be used to predict the fuel efficiency for highway driving given the engine’s displacement and the dummy variable FuelPremium.
- c. Use α = .05 to determine whether the dummy variable added in part (b) is significant.
- d. Consider the addition of the dummy variables FrontWheel and RearWheel. The value of FrontWheel is 1 if the car has front wheel drive and 0 otherwise; the value of RearWheel is 1 if the car has rear wheel drive and 0 otherwise. Thus, for a car that has all-wheel drive, the value of FrontWheel and the value of RearWheel is 0. Develop the estimated regression equation that can be used to predict the fuel efficiency for highway driving given the engine’s displacement, the dummy variable FuelPremium, and the dummy variables FrontWheel and RearWheel.
- e. For the estimated regression equation developed in part (d), test for overall significance and individual significance using α = .05.
Trending nowThis is a popular solution!
Chapter 15 Solutions
EBK STATISTICS FOR BUSINESS & ECONOMICS
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Suppose that you buy a lottery ticket, and you have to pick six numbers from 1 through 50 (repetitions allowed). Which combination is more likely to win: 13, 48, 17, 22, 6, 39 or 1, 2, 3, 4, 5, 6? barrow_forward2 Make a histogram from this data set of test scores: 72, 79, 81, 80, 63, 62, 89, 99, 50, 78, 87, 97, 55, 69, 97, 87, 88, 99, 76, 78, 65, 77, 88, 90, and 81. Would a pie chart be appropriate for this data? ganizing Quantitative Data: Charts and Graphs 45arrow_forward10 Meteorologists use computer models to predict when and where a hurricane will hit shore. Suppose they predict that hurricane Stat has a 20 percent chance of hitting the East Coast. a. On what info are the meteorologists basing this prediction? b. Why is this prediction harder to make than your chance of getting a head on your next coin toss? U anoiaarrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Intermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning