Introductory Chemistry: Foundation - Text (Looseleaf)
Introductory Chemistry: Foundation - Text (Looseleaf)
9th Edition
ISBN: 9781337399623
Author: ZUMDAHL
Publisher: Cengage
Question
Book Icon
Chapter 15, Problem 55QAP
Interpretation Introduction

(a)

Interpretation:

The new molarity after the dilution of the solution is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolutionL.

Expert Solution
Check Mark

Answer to Problem 55QAP

The new molarity of the given diluted solution is 3.75×102M.

Explanation of Solution

The initial volume and molarity of NaCl solution is given to be 25.0mL and 0.119M respectively.

The conversion of units of 25.0mL into L is done as,

25.0mL=25.01000L=0.025L

The number of moles of a solute is calculated by the formula,

Numberofmolesofsolute=Volumeofsolution×Molarity        (1)

Substitute the values of initial volume and molarity of NaCl solution in the equation (1).

Numberofmolesofsolute=0.025L×0.119M=0.002975moles=3.0×103moles

It is given that 55.0mL of water is added in the given solution. During the dilution, the amount of the solute particles in initial and final solution remains same, only the amount of solvent gets changed.

The conversion of units of 55.0mL into L is done as,

55.0mL=55.01000L=0.055L

Thus, the total volume is calculated by the formula,

Finalvolume=Initialvolume+Volumeofwateradded        (2)

Substitute the values of initial volume and volume of water added in the equation (2).

Finalvolume=0.025L+0.055L=0.08L

The new molarity of the solution is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolutionL        (3)

Substitute the values of number of moles of solute and final volume in the equation (3).

Molarity=3.0×103moles0.08L=37.5×103M=3.75×102M

Therefore, the new molarity of the given diluted solution is 3.75×102M.

Interpretation Introduction

(b)

Interpretation:

The new molarity after the dilution of the solution is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteLitersofsolution.

Expert Solution
Check Mark

Answer to Problem 55QAP

The new molarity of the given diluted solution is 0.188M.

Explanation of Solution

The initial volume and molarity of NaOH solution is given to be 45.3mL and 0.701M respectively.

The conversion of units of 45.3mL into L is done as,

45.3mL=45.31000L=0.0453L

The number of moles of a solute is calculated by the formula,

Numberofmolesofsolute=Volumeofsolution×Molarity        (1)

Substitute the values of initial volume and molarity of NaOH solution in the equation (1).

Numberofmolesofsolute=0.0453L×0.701M=0.032moles

It is given that 125mL of water is added in the given solution. During the dilution, the amount of the solute particles in initial and final solution remains same, only the amount of solvent gets changed.

The conversion of units of 125mL into L is done as,

125mL=1251000L=0.125L

Thus, the total volume is calculated by the formula,

Finalvolume=Initialvolume+Volumeofwateradded        (2)

Substitute the values of initial volume and volume of water added in the equation (2).

Finalvolume=0.0453L+0.125L=0.1703L

The new molarity of the solution is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolutionL        (3)

Substitute the values of number of moles of solute and final volume in the equation (3).

Molarity=0.032moles0.1703L=0.188M

Therefore, the new molarity of the given diluted solution is 0.188M.

Interpretation Introduction

(c)

Interpretation:

The new molarity after the dilution of the solution is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteLitersofsolution.

Expert Solution
Check Mark

Answer to Problem 55QAP

The new molarity of the given diluted solution is 0.558M.

Explanation of Solution

The initial volume and molarity of KOH solution is given to be 125mL and 3.01M respectively.

The conversion of units of 125mL into L is done as,

125mL=1251000L=0.125L

The number of moles of a solute is calculated by the formula,

Numberofmolesofsolute=Volumeofsolution×Molarity        (1)

Substitute the values of initial volume and molarity of KOH solution in the equation (1).

Numberofmolesofsolute=0.125L×3.01M=0.377moles

It is given that 550mL of water is added in the given solution. During the dilution, the amount of the solute particles in initial and final solution remains same, only the amount of solvent gets changed.

The conversion of units of 550.mL into L is done as,

550mL=5501000L=0.55L

Thus, the total volume is calculated by the formula,

Finalvolume=Initialvolume+Volumeofwateradded        (2)

Substitute the values of initial volume and volume of water added in the equation (2).

Finalvolume=0.125L+0.55L=0.675L

The new molarity of the solution is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolutionL        (3)

Substitute the values of number of moles of solute and final volume in the equation (3).

Molarity=0.377moles0.675L=0.558M

Therefore, the new molarity of the given diluted solution is 0.558M.

Interpretation Introduction

(d)

Interpretation:

The new molarity after the dilution of the solution is to be calculated.

Concept Introduction:

The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.

The number of moles is calculated by the formula,

Moles=MassgMolarmass

The molarity is calculated by the formula,

Molarity=NumberofmolesofsoluteLitersofsolution.

Expert Solution
Check Mark

Answer to Problem 55QAP

The new molarity of the given diluted solution is 0.380M.

Explanation of Solution

The initial volume and molarity of CaCl2 solution is given to be 75.3mL and 2.07M respectively.

The conversion of units of 75.3mL into L is done as,

75.3mL=75.31000L=0.0753L

The number of moles of a solute is calculated by the formula,

Numberofmolesofsolute=Volumeofsolution×Molarity        (1)

Substitute the values of initial volume and molarity of CaCl2 solution in the equation (1).

Numberofmolesofsolute=0.0753L×2.07M=0.156moles

It is given that 335mL of water is added in the given solution. During the dilution, the amount of the solute particles in initial and final solution remains same, only the amount of solvent gets changed.

The conversion of units of 335mL into L is done as,

335mL=3351000L=0.335L

Thus, the total volume is calculated by the formula,

Finalvolume=Initialvolume+Volumeofwateradded        (2)

Substitute the values of initial volume and volume of water added in the equation (2).

Finalvolume=0.0753L+0.335L=0.4103L

The new molarity of the solution is calculated by the formula,

Molarity=NumberofmolesofsoluteVolumeofsolutionL        (3)

Substitute the values of number of moles of solute and final volume in the equation (3).

Molarity=0.156moles0.4103L=0.380M

Therefore, the new molarity of the given diluted solution is 0.380M.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part 4: Provide a detailed retrosynthetic analysis and a plausible forward synthesis the following molecule. храдо of
3A: Starting with benzocyclobutene, synthesize the naphthalene derivative below.
7. The addition of HBr to 2,5-dimethyl-2,4-heptadiene gives the same product, A, at both low and high temperatures. Provide the structure of A and explain the kinetic and thermodynamic product are the same in this reaction. HBr -78°C or 60°C A

Chapter 15 Solutions

Introductory Chemistry: Foundation - Text (Looseleaf)

Ch. 15.8 - ercise 15.10 Calculate the normality of a solution...Ch. 15.8 - Prob. 15.11SCCh. 15 - ou have a solution of table sail in water. What...Ch. 15 - onsider a sugar solution (solution A) with...Ch. 15 - You need to make 150.0 mL of a 0.10 M NaCI...Ch. 15 - ou have two solutions containing solute A. To...Ch. 15 - m>5. Which of the following do you need to know to...Ch. 15 - onsider separate aqueous solutions of HCI and...Ch. 15 - Prob. 7ALQCh. 15 - an one solution have a greater concentration than...Ch. 15 - Prob. 9ALQCh. 15 - You have equal masses of different solutes...Ch. 15 - Which of the following solutions contains the...Ch. 15 - As with all quantitative problems in chemistry,...Ch. 15 - Prob. 13ALQCh. 15 - Prob. 14ALQCh. 15 - solution is a homogeneous mixture. Can you give an...Ch. 15 - ow do the properties of a nonhomogeneous...Ch. 15 - Prob. 3QAPCh. 15 - Prob. 4QAPCh. 15 - n Chapter 14. you learned that the bonding forces...Ch. 15 - n oil spill spreads out on the surface of water,...Ch. 15 - . The “Chemistry in Focus” segment Water, Water...Ch. 15 - Prob. 8QAPCh. 15 - Prob. 9QAPCh. 15 - Prob. 10QAPCh. 15 - A solution is a homogeneous mixture and, unlike a...Ch. 15 - Prob. 12QAPCh. 15 - How do we define the mass percent composition of a...Ch. 15 - Prob. 14QAPCh. 15 - Calculate the percent by mass of solute in each of...Ch. 15 - Calculate the percent by mass of solute in each of...Ch. 15 - Prob. 17QAPCh. 15 - Prob. 18QAPCh. 15 - A sample of an iron alloy contains 92.1 g Fe. 2.59...Ch. 15 - Consider the iron alloy described in Question 19....Ch. 15 - An aqueous solution is to be prepared that will be...Ch. 15 - Prob. 22QAPCh. 15 - A solution is to be prepared that will be 4.50% by...Ch. 15 - Prob. 24QAPCh. 15 - Prob. 25QAPCh. 15 - Hydrogen peroxide solutions sold in drugstores as...Ch. 15 - Prob. 27QAPCh. 15 - A solvent sold for use in the laboratory contains...Ch. 15 - Prob. 29QAPCh. 15 - A solution labeled “0.25 M AICl3” would contain...Ch. 15 - What is a standard solution? Describe the steps...Ch. 15 - Prob. 32QAPCh. 15 - 33. For each of the following solutions, the...Ch. 15 - 34. For each of the following solutions, the...Ch. 15 - 35. For each of the following solutions, the mass...Ch. 15 - Prob. 36QAPCh. 15 - 37. A laboratory assistant needs to prepare 225 mL...Ch. 15 - Prob. 38QAPCh. 15 - 39. Standard solutions of calcium ion used to test...Ch. 15 - Prob. 40QAPCh. 15 - 41. If 42.5 g of NaOH is dissolved in water and...Ch. 15 - 42. Standard silver nitrate solutions are used in...Ch. 15 - Prob. 43QAPCh. 15 - Prob. 44QAPCh. 15 - Prob. 45QAPCh. 15 - Prob. 46QAPCh. 15 - Prob. 47QAPCh. 15 - 48. What mass of solute is present in 225 mL of...Ch. 15 - Prob. 49QAPCh. 15 - Prob. 50QAPCh. 15 - Prob. 51QAPCh. 15 - 52. What volume of a 0.300 M CaCl2 solution is...Ch. 15 - Prob. 53QAPCh. 15 - Prob. 54QAPCh. 15 - Prob. 55QAPCh. 15 - Prob. 56QAPCh. 15 - Prob. 57QAPCh. 15 - Prob. 58QAPCh. 15 - Prob. 59QAPCh. 15 - 60. Suppose 325 in L of 0.150 M NaOH is needed for...Ch. 15 - 61. How much water must be added w 500. mL of...Ch. 15 - Prob. 62QAPCh. 15 - Prob. 63QAPCh. 15 - 64. Generally only the carbonates of the Group I...Ch. 15 - 65. Many metal ions are precipitated from solution...Ch. 15 - 66. Calcium oxalate, CaCO4, is very insoluble in...Ch. 15 - 67. When aqueous solutions of lead(II) ion are...Ch. 15 - 68. Aluminum ion may be precipitated from aqueous...Ch. 15 - 69. What volume of 0.502 M NaOH solution would be...Ch. 15 - 70. What volume of a 0.500 M NaOH solution would...Ch. 15 - 71. A sample of sodium hydrogen carbonate solid...Ch. 15 - 72. The total acidity in water samples can be...Ch. 15 - Prob. 73QAPCh. 15 - Prob. 74QAPCh. 15 - Prob. 75QAPCh. 15 - Prob. 76QAPCh. 15 - 77. Explain why the equivalent weight of H2SO4 is...Ch. 15 - Prob. 78QAPCh. 15 - Prob. 79QAPCh. 15 - Prob. 80QAPCh. 15 - Prob. 81QAPCh. 15 - Prob. 82QAPCh. 15 - Prob. 83QAPCh. 15 - Prob. 84QAPCh. 15 - 85. How many milliliters of 0.50 N NaOH are...Ch. 15 - 86. What volume of 0.104 N H2SO4is required to...Ch. 15 - 87. What volume of 0.151 N NaOH is required to...Ch. 15 - Prob. 88QAPCh. 15 - 89. A mixture is prepared by mixing 50.0 g of...Ch. 15 - Prob. 90APCh. 15 - 91. Suppose 50.0 mL of 0.250 M CoCl2 solution is...Ch. 15 - Prob. 92APCh. 15 - 93. Calculate the mass of AgCl formed, and the...Ch. 15 - 94. Baking soda (sodium hydrogen carbonate....Ch. 15 - 95. Many metal ions form insoluble sulfide...Ch. 15 - Prob. 96APCh. 15 - Prob. 97APCh. 15 - Prob. 98APCh. 15 - Prob. 99APCh. 15 - Prob. 100APCh. 15 - Prob. 101APCh. 15 - You mix 225.0 mL of a 2.5 M HCl solution with...Ch. 15 - A solution is 0.1% by mass calcium chloride....Ch. 15 - Prob. 104APCh. 15 - Prob. 105APCh. 15 - A certain grade of steel is made by dissolving 5.0...Ch. 15 - Prob. 107APCh. 15 - Prob. 108APCh. 15 - Prob. 109APCh. 15 - Prob. 110APCh. 15 - How many moles of each ion are present in 11.7 mL...Ch. 15 - Prob. 112APCh. 15 - Prob. 113APCh. 15 - Prob. 114APCh. 15 - Concentrated hydrochloric acid is made by pumping...Ch. 15 - Prob. 116APCh. 15 - Prob. 117APCh. 15 - Prob. 118APCh. 15 - If 10. g of AgNO3 is available, what volume of...Ch. 15 - Prob. 120APCh. 15 - Calcium carbonate, CaCO3, can be obtained in a...Ch. 15 - Prob. 122APCh. 15 - How many milliliters of 18.0 M H2SO4 are required...Ch. 15 - Consider the reaction between 1.0 L of 3.0 M...Ch. 15 - When 10. L of water is added to 3.0 L of 6.0 M...Ch. 15 - Prob. 126APCh. 15 - How many grams of Ba (NO3)2are required to...Ch. 15 - Prob. 128APCh. 15 - What volume of 0.250 M HCI is required to...Ch. 15 - Prob. 130APCh. 15 - Prob. 131APCh. 15 - Prob. 132APCh. 15 - How many milliliters of 0.105 M NaOH are required...Ch. 15 - Prob. 134APCh. 15 - Prob. 135APCh. 15 - Consider the reaction between 0.156 L of 0.105 M...Ch. 15 - Prob. 137CPCh. 15 - A solution is prepared by dissolving 0.6706 g of...Ch. 15 - What volume of 0.100 M NaOH is required to...Ch. 15 - Prob. 140CPCh. 15 - A 450.O-mL sample of a 0.257 M solution of silver...Ch. 15 - A 50.00-mL sample of aqueous Ca(OH)2 requires...Ch. 15 - When organic compounds containing sulfur are...Ch. 15 - Prob. 1CRCh. 15 - Prob. 2CRCh. 15 - Prob. 3CRCh. 15 - Prob. 4CRCh. 15 - Prob. 5CRCh. 15 - Prob. 6CRCh. 15 - Prob. 7CRCh. 15 - Prob. 8CRCh. 15 - Prob. 9CRCh. 15 - Prob. 10CRCh. 15 - Prob. 11CRCh. 15 - Without consulting your textbook, list and explain...Ch. 15 - What does “STP’ stand for? What conditions...Ch. 15 - Prob. 14CRCh. 15 - Prob. 15CRCh. 15 - Define the normal boiling point of water. Why does...Ch. 15 - Are changes in state physical or chemical changes?...Ch. 15 - Prob. 18CRCh. 15 - Prob. 19CRCh. 15 - Prob. 20CRCh. 15 - Define a crystalline solid. Describe in detail...Ch. 15 - Define the bonding that exists in metals and how...Ch. 15 - Prob. 23CRCh. 15 - Define a saturated solution. Does saturated mean...Ch. 15 - Prob. 25CRCh. 15 - When a solution is diluted by adding additional...Ch. 15 - Prob. 27CRCh. 15 - Prob. 28CRCh. 15 - Prob. 29CRCh. 15 - Prob. 30CRCh. 15 - Prob. 31CRCh. 15 - When calcium carbonate is heated strongly, it...Ch. 15 - If an electric current is passed through molten...Ch. 15 - Prob. 34CRCh. 15 - Prob. 35CRCh. 15 - Prob. 36CRCh. 15 - Prob. 37CRCh. 15 - Prob. 38CRCh. 15 - Prob. 39CRCh. 15 - Prob. 40CRCh. 15 - Prob. 41CRCh. 15 - 42. a. Fill in the following table as if it is a...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning