Concept explainers
Which of the following solutions contains the greatest number of particles? Support your answer.
.0 mL of 0 10 M sodium chloride
.0 mL of 0.10 M calcium chloride
.0 mL of 0.10 M iron(III) chloride
.0 mL of 0.10 M potassium bromide
.0 mL of 0.10 M sucrose (table sugar)
Interpretation:
The solution containing the greatest number of particles is to be predicted.
Concept Introduction:
There are many ways to determine the concentration of the solution. One of the most used methods is molarity. Molarity may be defined as the number of moles of the solute in one liter of the whole solution. Thus, the molarity can be calculated as,
Answer to Problem 11ALQ
The correct option is (b).
Explanation of Solution
Reason for correct option:
(b) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
Reasons for incorrect options:
(a) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(c) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(d) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(e) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
The total number of particles present in the solution is
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
Additional Science Textbook Solutions
Organic Chemistry
Physical Universe
SEELEY'S ANATOMY+PHYSIOLOGY
Cosmic Perspective Fundamentals
General, Organic, and Biological Chemistry - 4th edition
Fundamentals of Anatomy & Physiology (11th Edition)
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning