bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 47AP

A particle with a mass of 0.500 kg is attached to a horizontal spring with a force constant of 50.0 N/m. At the moment t = 0, the particle has its maximum speed of 20.0 m/s and is moving to the left. (a) Determine the particle’s equation of motion, specifying its position as a function of time. (b) Where in the motion is the potential energy three times the kinetic energy? (c) Find the minimum time interval required for the particle to move from x = 0 to x = 1.0 m. (d) Find the length of a simple pendulum with the same period.

Blurred answer
Students have asked these similar questions
A block of mass m = 2.00 kg is attached to a spring of force constant k = 4.95 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position x; = 4.10 cm to the right of equilibrium and released from rest. k m x= 0 x= x; (a) Find the the work required to stretch the spring. (b) Find the speed the block has as it passes through equilibrium. m/s
A 3.1 kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring. (a) Determine the force constant (in N/m) of the spring, if the box compresses the spring 6.2 cm before coming to rest. Is energy conserved? How is the initial kinetic energy of the box related to the final potential energy of the spring? Can you write expressions for the initial kinetic energy of the box and the final potential energy of the spring? N/m (b) Determine the initial speed (in m/s) the box would need in order to compress the spring by 1.7 cm. Knowing that the kinetic energy of the box becomes potential energy of the spring, can you obtain an expression that will allow you to determine the initial speed of the box? m/s
The block in the figure lies on a horizontal frictionless surface, and the spring constant is 53.0 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a constant magnitude of 6.0 N pulls the block in the positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy? X = 0 Block F = 0 attached to spring (a) Number Units (b) Number Units (c) Number Units (d) Number Units (e) Number Units

Chapter 15 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term

Ch. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - Prob. 6PCh. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - You attach an object to the bottom end of a...Ch. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - While driving behind a car traveling at 3.00 m/s,...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Prob. 32APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Prob. 34APCh. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - Prob. 36APCh. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - Prob. 38APCh. 15 - Prob. 39APCh. 15 - Prob. 40APCh. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 42APCh. 15 - Prob. 43APCh. 15 - Prob. 44APCh. 15 - A block of mass m is connected to two springs of...Ch. 15 - Review. A light balloon filled with helium of...Ch. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - Prob. 49CPCh. 15 - Prob. 50CPCh. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY