Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 45EAP
A 5.0 kg block hangs from a spring with spring constant 2000 N/m. The block is pulled down 5.0cm from the equilibrium position and given an initial velocity of 1.0 m/s back toward equilibrium. What are the (a) frequency, (b) amplitude, and (e) total mechanical energy of the motion?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 15 - Prob. 1CQCh. 15 - A pendulum on Planet X, where the value of g is...Ch. 15 - FIGURE Q15.3 shows a position-versus-time graph...Ch. 15 - FIGURE Q15.4 shows a position-versus-time graph...Ch. 15 - 5. Equation 15.25 states that . What does this...Ch. 15 - A block oscillating on a spring has an amplitude...Ch. 15 - A block oscillating on a spring has a maximum...Ch. 15 - 8. The solid disk and circular hoop in FIGURE...Ch. 15 - FIGURE Q15.9 shows the potential-energy diagram...Ch. 15 - Suppose the damping constant b of an oscillator...
Ch. 15 - Prob. 11CQCh. 15 - 12. What is the difference between the driving...Ch. 15 - An air-track glider attached to a spring...Ch. 15 - An air-track is attached to a spring. The glider...Ch. 15 - Prob. 3EAPCh. 15 - An object in SHM oscillates with a period of 4.0 s...Ch. 15 - What are the (a) amplitude, (b) frequency, and (c)...Ch. 15 - What are the (a) amplitude, (b) frequency, and (c)...Ch. 15 - FIGURE EX15.7 is the Position-versus-time graph of...Ch. 15 - FIGURE EX15.8 is the velocity-versus-time graph of...Ch. 15 - An object in simple harmonic motion has an...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An air-track glider attached to a spring...Ch. 15 - 14. A block attached to a spring with unknown...Ch. 15 - 15. A 200 g air-track glider is attached to a...Ch. 15 - A 200 g mass attached to a horizontal spring...Ch. 15 - Prob. 17EAPCh. 15 - A 1.0 kg block is attached to a spring with spring...Ch. 15 - Prob. 19EAPCh. 15 - Prob. 20EAPCh. 15 - A spring is hanging from the ceiling. Attaching a...Ch. 15 - 22. A spring with spring constant 15 N/m hangs...Ch. 15 - 23. A spring is hung from the ceiling. When a...Ch. 15 - Prob. 24EAPCh. 15 - A 200 g ball is tied to a string. It is pulled to...Ch. 15 - Prob. 26EAPCh. 15 - Prob. 27EAPCh. 15 - Prob. 28EAPCh. 15 - Prob. 29EAPCh. 15 - A 100 g mass on a 1.0-m-long string is pulled 8.0...Ch. 15 - A uniform steel bar swings from a pivot at one end...Ch. 15 - Prob. 32EAPCh. 15 - Prob. 33EAPCh. 15 - Prob. 34EAPCh. 15 - Vision is blurred if the head is vibrated at 29 Hz...Ch. 15 - Prob. 36EAPCh. 15 - Prob. 37EAPCh. 15 - a. When the displacement of a mass on a spring is...Ch. 15 - For a particle in simple harmonic motion, show...Ch. 15 - A 100g block attached to a spring with spring...Ch. 15 - A 0.300 kg oscillator has a speed of 95.4cm/s when...Ch. 15 - An ultrasonic transducer, of the type used in...Ch. 15 - Astronauts in space cannot weigh themselves by...Ch. 15 - 44. Your lab instructor has asked you to measure a...Ch. 15 - A 5.0 kg block hangs from a spring with spring...Ch. 15 - Prob. 46EAPCh. 15 - A block hangs in equilibrium from a vertical...Ch. 15 - Prob. 48EAPCh. 15 -
49. Scientists are measuring the properties of a...Ch. 15 - Prob. 50EAPCh. 15 - A compact car has a mass of 1200 kg. Assume that...Ch. 15 - Prob. 52EAPCh. 15 - Prob. 53EAPCh. 15 - Prob. 54EAPCh. 15 - Prob. 55EAPCh. 15 - Prob. 56EAPCh. 15 - Prob. 57EAPCh. 15 - A uniform rod of mass M and length L swings as a...Ch. 15 - Prob. 59EAPCh. 15 - 60. A 500 g air-track glider attached to a spring...Ch. 15 - Prob. 61EAPCh. 15 - Prob. 62EAPCh. 15 - A molecular bond can be modeled as a spring...Ch. 15 - Prob. 64EAPCh. 15 - Prob. 65EAPCh. 15 - Prob. 66EAPCh. 15 - The 15 g head of a bobble-head doll oscillates in...Ch. 15 - An oscillator with a mass of 500 g and a period of...Ch. 15 - Prob. 69EAPCh. 15 - Prob. 70EAPCh. 15 - Prob. 71EAPCh. 15 - Prob. 72EAPCh. 15 - Prob. 73EAPCh. 15 - A block ona frictionless FIGURE P15.74 to two...Ch. 15 - Prob. 75EAPCh. 15 - Prob. 76EAPCh. 15 - A solid sphere of mass M and radius R is suspended...Ch. 15 - A uniform rod of length L oscillates as a pendulum...Ch. 15 - Prob. 79EAPCh. 15 - Prob. 80EAPCh. 15 - FIGURE CP15.81 shows a 200 g uniform rod pio4ed at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forwardA spherical bob of mass m and radius R is suspended from a fixed point by a rigid rod of negligible mass whose length from the point of support to the center of the bob is L (Fig. P16.75). Find the period of small oscillation. N The frequency of a physical pendulum comprising a nonuniform rod of mass 1.25 kg pivoted at one end is observed to be 0.667 Hz. The center of mass of the rod is 40.0 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point?arrow_forward
- The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardA lightweight spring with spring constant k = 225 N/m is attached to a block of mass m1 = 4.50 kg on a frictionless, horizontal table. The blockspring system is initially in the equilibrium configuration. A second block of mass m2 = 3.00 kg is then pushed against the first block, compressing the spring by x = 15.0 cm as in Figure P16.77A. When the force on the second block is removed, the spring pushes both blocks to the right. The block m2 loses contact with the springblock 1 system when the blocks reach the equilibrium configuration of the spring (Fig. P16.77B). a. What is the subsequent speed of block 2? b. Compare the speed of block 1 when it again passes through the equilibrium position with the speed of block 2 found in part (a). 77. (a) The energy of the system initially is entirely potential energy. E0=U0=12kymax2=12(225N/m)(0.150m)2=2.53J At the equilibrium position, the total energy is the total kinetic energy of both blocks: 12(m1+m2)v2=12(4.50kg+3.00kg)v2=(3.75kg)v2=2.53J Therefore, the speed of each block is v=2.53J3.75kg=0.822m/s (b) Once the second block loses contact, the first block is moving at the speed found in part (a) at the equilibrium position. The energy 01 this spring-block 1 system is conserved, so when it returns to the equilibrium position, it will be traveling at the same speed in the opposite direction, or v=0.822m/s. FIGURE P16.77arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forward
- A block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardA blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forwardA block of unknown mass is attached to a spring with a spring constant of 6.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 30.0 cm/s. Calculate (a) the mass of the block, (b) the period of the motion, and (c) the maximum acceleration of the block.arrow_forward
- A block of mass m rests on a frictionless, horizontal surface and is attached to two springs with spring constants k1 and k2 (Fig. P16.22). It is displaced to the right and released. Find an expression for the angular frequency of oscillation of the resulting simple harmonic motion. FIGURE P16.22 Problems 22 and 81.arrow_forwardA 200-g block is attached to a horizontal spring and executes simple harmonic motion with a period of 0.250 s. The total energy of the system is 2.00 J. Find (a) the force constant of the spring and (b) the amplitude of the motion.arrow_forwardWhen a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY