Concept explainers
To allow a car to slow down or stop, hydraulic brakes transmit forces from a master cylinder to the brake pads through a fluid. Imagine this system as a tube filled with an incompressible fluid and a piston on each end. A force of 95.0 N is applied to a piston 2.65 cm in diameter on one end of the tube. a. What is the magnitude of the force that is exerted on the piston 5.15 cm in diameter on the other side? b. If the 2.65-cm piston is displaced by 1.00 cm, by how much is the 5.15-cm piston displaced?
(a)
Magnitude of force that is exerted on the piston on the other side.
Answer to Problem 40PQ
The magnitude of the force exerted on the piston on the other side is
Explanation of Solution
Pascal’s law states that pressure applied to a point of the fluid is transmitted equally and undiminished throughout the fluid. Therefore the pressure at either ends of the piston is equal.
Here,
Write the equation to find
Here,
Write the equation to find
Here,
Equate equations (I) and (II) and solve for
Write the equation to find the area of cross-section of end 1.
Here,
Write the equation to find the cross- section of end 2.
Here,
Write the equation to find
Here,
Write the equation to find
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the magnitude of the force exerted on the piston on the other side is
(b)
Displacement of
Answer to Problem 40PQ
The
Explanation of Solution
The fluid used in the brakes of automobiles are incompressible. So the volume of fluid displaced by the first piston must be equal to the volume of fluid displaced by second piston.
Here,
Write the equation to find
Here,
Write the equation to find
Here,
Substitute equations (VIII) and (IX) in above equation and solve for
Conclusion:
Substitute
Substitute
Substitute
Therefore, the
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- In an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air and an apparent mass of 0.0850 kg when completely submerged with lungs empty. (a) What mass of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.75 L is she able to float without treading water with her lungs filled with air?arrow_forwardWater is flowing through a pipe that has a constriction opening into a region with a wider cross-sectional area. If the pipe regions are cylindrical with radii of 0.10 m and 0.35 m, respectively, and the water is moving with a speed of 1.50 m/s in the wider section, what is the speed of the water in the constricted section?arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forward
- (a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forward(a) What is the fluid speed in a fire hose with a 9.00-cm diameter carrying 80.0 L of water per second? (b) What is the flow rate in cubic meters per second? (c) Would your answers be different if salt water replaced the fresh water in the fire hose?arrow_forward(a) Calculate the absolute pressure at an ocean depth of 1 000 m. Assume the density of seawater is 1 030 kg/m3 and the air above exerts a pressure of 101.3 kPa. (b) At this depth, what is the buoyant force on a spherical submarine having a diameter of 5.00 m?arrow_forward
- A 50.0-kg woman wearing high-heeled shoes is invited into a home in which the kitchen has vinyl floor covering. The heel on each shoe is circular and has a radius of 0.500 cm. (a) If the woman balances on one heel, what pressure does she exert on the floor? (b) Should the homeowner be concerned? Explain your answer.arrow_forwardYou are pumping up a bicycle tire with a hand pump, the piston of which has a 2.00-cm radius. (a) What force in newtons must you exert to create a pressure of 6.90105 Pa (b) What is unreasonable about this (a) result? (c) Which premises are unreasonable or inconsistent?arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forward
- (a) Verify that work input equals work output for a hydraulic system assuming no losses to friction. Do this by showing that the distance the output force moves is reduced by the same factor that the output force is increased. Assume the volume of the fluid is constant. (b) What effect would friction within the fluid and between components in the system have on the output force? How would this depend on whether or not the fluid is moving?arrow_forwardCase Study Shannon uses the example of a helium balloon to explain the buoyant force. Large helium blimp balloons are sometimes used as an advertisement (Fig. P15.78). The blimp balloon has a volume of 42.8 m3, and the mass of the empty blimp is 13.6 kg. It is held down by either a large-link steel chain or a large-link aluminum chain. Each link of steel has a mass of 2.6 kg, and each link of aluminum has a mass of 0.87 kg. The chain rests on the ground but is not attached to it. The density of helium gas is 0.180 kg/m3. a. How many links hang from the blimp if the steel chain is used? b. Compare your answer with the number of links that would hang if the aluminum chain were used instead. FIGURE P15.78arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning