College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 40P
The dome of a Van de Graaff generator receives a charge of 2.0 × 10−4 C. Find the strength of the electric field (a) inside the dome, (b) at the surface of the dome, assuming it has a radius of 1.0 m, and (c) 4.0 in front the center of the dome. Hint: See Section 15.5 to review properties of conductors in electrostatic equilibrium. Also, note that the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The dome of a Van de Graaffgenerator receives a charge of 2.0 × 10−4 C. Find the strength of the electric field (a) inside the dome, (b) at the surface of the dome, assuming it has a radius of 1.0 m, and (c) 4.0 m from the center of the dome. Hint: See Section 15.6 to review properties of conductors in electrostatic equilibrium. Also, note that the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.
Calculate the electric field entry in row 3 of the following table. (The row numbers are at the edge of the row.) The magnitude of the electric field is |dV/dx|, approximated as a positive ΔV/Δx
Voltage Level (Volts)
Position (cm)
15.7
7
12.2
5.6
9.5
4.1
6.4
2.9
3.3
1.4
0.0
0
Electric Field (V/cm)
Deviation (V/cm)
1
2
3
4
5
Average
6
The dome of a Van de Graaff generator receives a charge of 2.1 x 10 C. Find the strength of the electric field in the following situations. (Hint: Review properties of conductors in electrosta
equilibrium. Also, use the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.)
(a) inside the dome
(0
✓N/C
(b) at the surface of the dome, assuming it has a radius of 1.6 m
N/C
(c) 7.0 m from the center of the dome
N/C
Chapter 15 Solutions
College Physics
Ch. 15.1 - A suspended object A is attracted to a neutral...Ch. 15.2 - Object A has a charge of +2 C, and object B has a...Ch. 15.3 - A test charge of + 3 C is at a point P where the...Ch. 15.3 - A circular ring of charge of radius b has a total...Ch. 15.3 - A free electron and a free proton are placed in an...Ch. 15.4 - Rank the magnitudes of the electric field at...Ch. 15.8 - Calculate the magnitude of the flux of a constant...Ch. 15.8 - Suppose the electric field of Quick Quiz 15.7 is...Ch. 15.8 - Find the electric flux through the surface in...Ch. 15.8 - For a closed surface through which the net flux is...
Ch. 15 - A glass object receives a positive charge of +3 nC...Ch. 15 - The fundamental charge is e = 1.60 1019 C....Ch. 15 - Each of the following statements is related to...Ch. 15 - Two uncharged, conducting spheres are separated by...Ch. 15 - Four concentric spheres S1, S2, S3, and S4 are...Ch. 15 - IF a suspended object A is attracted to a charged...Ch. 15 - Positive charge Q is located at the center of a...Ch. 15 - Consider point A in Figure CQ15.8 located an...Ch. 15 - A student stands on a thick piece of insulating...Ch. 15 - In fair weather, there is an electric field at the...Ch. 15 - A charged comb often attracts small bits of dry...Ch. 15 - Why should a ground wire be connected to the metal...Ch. 15 - There are great similarities between electric and...Ch. 15 - A spherical surface surrounds a point charge q....Ch. 15 - If more electric field lines leave a Gaussian...Ch. 15 - A student who grew up in a tropical country and is...Ch. 15 - What happens when a charged insulator is placed...Ch. 15 - A 7.50-nC charge is located 1.80 m from a 4.20-nC...Ch. 15 - A charged particle A exerts a force of 2.62 N to...Ch. 15 - Rocket observations show that dust particles in...Ch. 15 - A small sphere of mass m = 7.50 g and charge q1 =...Ch. 15 - The nucleus of 8Be, which consists of 4 protons...Ch. 15 - A molecule of DNA (deoxyribonucleic acid) is 2.17...Ch. 15 - Two uncharged spheres are separated by 2.00 in. If...Ch. 15 - Four point charges are at the corners of a square...Ch. 15 - Two small identical conducting spheres are placed...Ch. 15 - Calculate the magnitude and direction of the...Ch. 15 - Three charges are arranged as shown in Figure...Ch. 15 - A positive charge q1 = 2.70 C on a frictionless...Ch. 15 - Three point charges are located at the corners of...Ch. 15 - Two identical metal blocks resting on a...Ch. 15 - Two small metallic spheres, each of mass m = 0.20...Ch. 15 - Panicle A of charge 3.00 104 C is at the origin,...Ch. 15 - A small object of mass 3.80 g and charge 18.0 C is...Ch. 15 - (a) Determine the electric field strength at a...Ch. 15 - An electric field of magnitude 5.25 105 N/C...Ch. 15 - An electron is accelerated by a constant electric...Ch. 15 - Charge q1 = 1.00 nC is at x1 = 0 and charge q2 =...Ch. 15 - A small sphere of charge q = +68 C and mass m =...Ch. 15 - A proton accelerates from rest in a uniform...Ch. 15 - (a) Find the magnitude and direction of the...Ch. 15 - Four point charges are located at the corners of a...Ch. 15 - A helium nucleus of mass m = 6.64 1027 kg and...Ch. 15 - A charged dust particle at rest in a vacuum is...Ch. 15 - A particle of mass 1.00 109 kg and charge 3.00 pC...Ch. 15 - Two equal positive charges are at opposite corners...Ch. 15 - Three point charges are located on a circular are...Ch. 15 - In Figure P15.31, determine the point (other than...Ch. 15 - Three charges are at the corners of an equilateral...Ch. 15 - Three identical charges (q = 5.0 C.) lie along a...Ch. 15 - Figure P15.31 shows the electric held lines for...Ch. 15 - (a) Sketch the electric field lines around an...Ch. 15 - (a) Sketch the electric field pattern around two...Ch. 15 - Two point charges are a small distance apart. (a)...Ch. 15 - Three equal positive charges are at the corners of...Ch. 15 - Refer 10 Figure 15.20. The charge lowered into the...Ch. 15 - The dome of a Van de Graaff generator receives a...Ch. 15 - If the electric field strength in air exceeds 3.0 ...Ch. 15 - In the Millikan oil-drop experiment illustrated in...Ch. 15 - A Van de Graaff generator is charged so that a...Ch. 15 - A uniform electric field of magnitude E = 435 N/C...Ch. 15 - An electric field of intensity 3.50 kN/C is...Ch. 15 - The electric field everywhere on the surface of a...Ch. 15 - Four closed surfaces, S1 through S4, together with...Ch. 15 - A charge q = +5.80 C is located at the center of a...Ch. 15 - Figure P15.49 shows a closed cylinder with...Ch. 15 - A charge of q = 2.00 109 G is spread evenly on a...Ch. 15 - A point charge q is located at the center of a...Ch. 15 - A charge of 1.70 102 C is at the center of a cube...Ch. 15 - Suppose the conducting spherical shell of Figure...Ch. 15 - A very large nonconducting plate lying in the...Ch. 15 - In deep spare, two spheres each of radius 5.00 m...Ch. 15 - A nonconducting, thin plane sheet of charge...Ch. 15 - Three point charges are aligned along the x-axis...Ch. 15 - A small plastic ball of mass m = 2.00 g is...Ch. 15 - A proton moving at v0 = 1.50 106 m/s enters the...Ch. 15 - The electrons in a particle beam each have a...Ch. 15 - A point charge +2Q is at the origin and a point...Ch. 15 - A 1.00-g cork ball having a positive charge of...Ch. 15 - Two 2.0-g spheres are suspended by 10.0-cm-long...Ch. 15 - a point charge of magnitude 5.00 C is at the...Ch. 15 - Two hard rubber spheres, each of mass m = 15.0 g,...Ch. 15 - Prob. 66APCh. 15 - A solid conducting sphere of radius 2.00 cm has a...Ch. 15 - Three identical point charges, each of mass m =...Ch. 15 - Each of the electrons in a particle beam has a...Ch. 15 - Protons are projected with an initial speed v0 = 9...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Will the electric field strength between two parallel conducting plates exceed the breakdown strength of dry air, which is 3.00106 V/m, if the plates are separated by 2.00 mm and a potential difference of 5.010V is applied? (b) How close together can the plates be with this applied voltage?arrow_forwardIs it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forwardAntialpha particles are hypothetical particles emitted in an antimatter reaction. A project in a Physicslaboratory is trying to find a way to protect astronauts against this type of radiation that could be aproblem in space travel. For that purpose, the lab is testing a sort of capacitor formed by an inner solidspherical conductor surrounded by a thin conducting shell of radii r<R (the largest spherical shell hasradius R, the solid conductor has radius r) with r=0.5m and R=2.0 m . Just outside (very near the surface)of the spherical shell a hall-effect based probe measures the electric field to be 65 Volts/meter (pointedtoward the center of the shell). To test the radiation shield, an antialpha particle is launched towardsthe device with speed of 120000 meter/second at a distance of 10 meters from the device. Find theclosest (distance) the antialpha particle can approach the center of the inner solid sphere.Hint: An antialpha particle consists of two antiprotons (negative charge)…arrow_forward
- need help with this problemarrow_forwards In the microscopic view of electrical conduction in a copper wire, electrons are accelerated by an electricfield and then collide with metal atoms after traveling about3.9 * 10-8m. If an electron begins from rest and is accelerated bya field of 0.065 N>C, what is its speed when it collides with a metalatom?arrow_forward(a) A spherical metal conductor (Q = 7.5C) is placed r = 0.9 m from an identical conductor with a different charge (q = 13.6 C). The two conductors are brought into contact and separated. What is the electric charge on either sphere after they have come into contact? Answer in SI units. (b) What is the magnitude of the initial electrical field (conductors in their initial configuration) at the midpoint between the two conductors? Answer in SI units and multiply your answer by 10^-11.arrow_forward
- Most workers in nanotechnology are actively monitored for excess static charge buildup. The human body acts like an insulator as one walks across a carpet, collecting −50 nC per step. What charge buildup will a worker in a manufacturing plant accumulate if she walks 29 steps and what is the maximum number of steps that any worker should be allowed to take before touching the components if a delicate manufacturing process can be damaged by an electrical discharge greater than 1012 electrons? Make sure to answer both parts of the question.arrow_forwardThe electric field in a region is uniform (not changing over distance) with a magnitude of 1.62 x10^3 N/C and it points in the +x direction. What is the magnitude of the voltage difference between two points separated on the x‐axis by a distance of 2.50 mm?arrow_forwardQ. 17: Electric potce ntial in a 3 dimensional space is given 1 G++ volt where x, y and z are in meter. A particle has charge q = 10-12C and mass m = 10-° g and is constrained to move in xy plane. Find the initial acceleration of the particle if it is released at (1, 1, 1) m. by V = yarrow_forward
- An electron with speed v0 = 3388829.6m/s travels parallel to and along the same direction as an electric field of magnitude E = 3154N/C. (a) How far will the electron travel before it stops? Answer in SI units and multiply your answer by 10^2. (b) How much time will elapse before it returns to its starting point? Answer in SI units and multiply your answer by 10^8.arrow_forwardAn electron is traveling through a uniform electric field. The field is constant and given by Part A E = (2.00 x 10-11N/C) î – (1.20 × 10-11 N/C) j. At t = 0, the electron is at the origin and traveling in the x direction with a speed of 2.80 m/s. What is its position 1.00 s later? ΑΣφ ? Submit Request Answer Part B ΑΣφ Y = Submit Request Answerarrow_forwardWould be able to help me answer this please? Consider a straight, non-conducting rod of length L that is charged such that its charge density increases linearly from zero at one end to a maximum λₒ at the other. Derive an expression for the total charge on the conductor in terms of L and λₒ. I know that the total charge density is equal to αx (α being a constant and x being a small amount of L), and that dq=λdx and that you integrate, but how am I meant to get it in terms of λₒ and L ???arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY