Concept explainers
When trying to decide what car to buy, real value is not necessarily determined by how much you spend on the initial purchase. Instead, cars that are reliable and don’t cost much to own often represent the best values. But no matter how reliable or inexpensive a car may cost to own, it must also perform well.
To measure value, Consumer Reports developed a statistic referred to as a value score. The value score is based upon five-year owner costs, overall road-test scores, and predicted-reliability ratings. Five-year owner costs are based upon the expenses incurred in the first five years of ownership, including depreciation, fuel, maintenance and repairs, and so on. Using a national average of 12,000 miles per year, an average cost per mile driven is used as the measure of five-year owner costs. Road-test scores are the results of more than 50 tests and evaluations and are based on a 100-point scale, with higher scores indicating better performance, comfort, convenience, and fuel economy. The highest road-test score obtained in the tests conducted by Consumer Reports was a 99 for a Lexus LS 460L. Predicted-reliability ratings (1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good, and 5 = Excellent) are based upon data from Consumer Reports’ Annual Auto Survey.
A car with a value score of 1.0 is considered to be an “average-value” car. A car with a value score of 2.0 is considered to be twice as good a value as a car with a value score of 1.0; a car with a value score of .5 is considered half as good as average; and so on. The data for three sizes of cars (13 small sedans, 20 family sedans, and 21 upscale sedans), including the price ($) of each car tested, are contained in the file CarValues (Consumer Reports website). To incorporate the effect of size of car, a categorical variable with three values (small sedan, family sedan, and upscale sedan), use the following dummy variables:
Managerial Report
- 1. Treating Cost/Mile as the dependent variable, develop an estimated regression with Family-Sedan and Upscale-Sedan as the independent variables. Discuss your findings.
- 2. Treating Value Score as the dependent variable, develop an estimated regression equation using Cost/Mile, Road-Test Score, Predicted Reliability, Family-Sedan, and Upscale-Sedan as the independent variables.
- 3. Delete any independent variables that are not significant from the estimated regression equation developed in part 2 using a .05 level of significance. After deleting any independent variables that are not significant, develop a new estimated regression equation.
- 4. Suppose someone claims that “smaller cars provide better values than larger cars.” For the data in this case, the Small Sedans represent the smallest type of car and the Upscale Sedans represent the largest type of car. Does your analysis support this claim?
- 5. Use
regression analysis to develop an estimated regression equation that could be used to predict the value score given the value of the Road-Test Score. - 6. Use regression analysis to develop an estimated regression equation that could be used to predict the value score given the Predicted Reliability.
- 7. What conclusions can you derive from your analysis?
Trending nowThis is a popular solution!
Chapter 15 Solutions
Essentials of Statistics for Business and Economics
- A well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt