
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 2QP
Which of the following statements is correct about a reacting system at equilibrium: (a) the concentrations of reactants are equal to the concentrations of products, (b) the rate of the forward reaction is equal to the rate of the reverse reaction.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ
Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this
system:
rise
Under these conditions, will the pressure of N2 tend to rise or fall?
☐ x10
fall
Is it possible to reverse this tendency by adding H₂?
In other words, if you said the pressure of N2 will tend to rise, can that be
changed to a tendency to fall by adding H2? Similarly, if you said the
pressure of N will tend to fall, can that be changed to a tendency to rise
by adding H₂?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of H₂ needed to reverse it.
Round your answer to 2 significant digits.
yes
no
☐
atm
Х
ด
?
olo
18
Ar
Four liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.
Chapter 15 Solutions
Chemistry
Ch. 15.1 - Practice Problem ATTEMPT
In an analysis of the...Ch. 15.1 - Prob. 1PPBCh. 15.1 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.2 - Practice ProblemATTEMPT Write the reaction...Ch. 15.2 - Practice Problem BUILD
Write the equation for the...Ch. 15.2 - Practice ProblemCONCEPTUALIZE In principle, in the...Ch. 15.2 - Select the correct equilibrium expression for the...Ch. 15.2 - Prob. 2CPCh. 15.3 - Practice Problem ATTEMPT Write equilibrium...Ch. 15.3 - Practice Problem BUILD
Which of the following...
Ch. 15.3 - Prob. 1PPCCh. 15.3 - Prob. 1CPCh. 15.3 - Prob. 2CPCh. 15.3 - Given the following information: HF ( a q ) ⇄ H +...Ch. 15.3 - Prob. 4CPCh. 15.4 - Practice ProblemATTEMPT The following reactions...Ch. 15.4 - Practice Problem BUILD
The equation represents a...Ch. 15.4 - Practice ProblemCONCEPTUALIZE Consider a chemical...Ch. 15.4 - Use the following information to answer questions...Ch. 15.4 - Prob. 2CPCh. 15.4 - 15.4.3 If for the reaction at a certain...Ch. 15.4 - If K c = 3 for the reaction X + 2Y ⇄ Z at a...Ch. 15.5 - Practice ProblemATTEMPT Write K? expressions for (...Ch. 15.5 - Prob. 1PPBCh. 15.5 - Prob. 1PPCCh. 15.5 - Prob. 1CPCh. 15.5 - Prob. 2CPCh. 15.5 - Prob. 3CPCh. 15.5 - Prob. 4CPCh. 15.5 - Prob. 5CPCh. 15.5 - Prob. 6CPCh. 15.6 - Practice Problem ATTEMPT
For the reaction:
....Ch. 15.6 - Practice ProblemBUILD K p = 2.79 × 10 − 5 for the...Ch. 15.6 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.7 - Prob. 1PPACh. 15.7 - Prob. 1PPBCh. 15.7 - Prob. 1PPCCh. 15.8 - Practice ProblemATTEMPT Calculate the equilibrium...Ch. 15.8 - Practice ProblemBUILD Determine the initial...Ch. 15.8 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.9 - Prob. 1PPACh. 15.9 - Prob. 1PPBCh. 15.9 - Prob. 1PPCCh. 15.10 - Practice ProblemATTEMPT Aqueous hydrocyanic acid...Ch. 15.10 - Practice Problem BUILD Consider a weak acid, HA,...Ch. 15.10 - Practice ProblemCONCEPTUALIZE Each of the...Ch. 15.11 - Practice Problem ATTEMPT Determine the equilibrium...Ch. 15.11 - Prob. 1PPBCh. 15.11 - Prob. 1PPCCh. 15.12 - Practice ProblemATTEMPT For each change indicated,...Ch. 15.12 - Prob. 1PPBCh. 15.12 - Practice ProblemCONCEPTUALIZE Consider the...Ch. 15.13 - Practice Problem ATTEMPT
For each reaction,...Ch. 15.13 - Practice Problem BUILD
For the following...Ch. 15.13 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.14 - Practice Problem ATTEMPT
The reaction of carbon...Ch. 15.14 - Practice Problem BUILD
Consider the hypothetical...Ch. 15.14 - Practice Problem CONCEPTUALIZE
The decomposition...Ch. 15 - The K a for hydrocyanic acid ( HCN ) is 4 .9 × 10...Ch. 15 - 15.2
Determine the concentrations of in a...Ch. 15 - 15.3
Determine the for a weak acid if a 0.10-M...Ch. 15 - Prob. 4KSPCh. 15 - Define equilibrium. Give two examples of a dynamic...Ch. 15 - 15.2 Which of the following statements is correct...Ch. 15 - 15.3 Consider the reversible reaction Explain how...Ch. 15 - What is the law of mass action?Ch. 15 - Briefly describe the importance of equilibrium in...Ch. 15 - Define reaction quotient. How does it differ from...Ch. 15 - Write reaction quotients for the following...Ch. 15 - Write the equation for the reaction that...Ch. 15 - Consider the reaction: 2NO ( g ) + 2H 2 ( g ) ⇄ N...Ch. 15 - The equilibrium constant for the reaction: 2SO 2 (...Ch. 15 - Consider the following equilibrium process at...Ch. 15 - The equilibrium constant for the reaction: 2 H 2 (...Ch. 15 - The first diagram represents a system at...Ch. 15 - These two diagrams represent systems at...Ch. 15 - Define homogeneous equilibrium and heterogeneous...Ch. 15 - What do the symbols K c and K p represent?Ch. 15 - Write the expressions for the equilibrium...Ch. 15 - Write equilibrium constant expressions for K c ,...Ch. 15 - Write the equilibrium constant expressions for K c...Ch. 15 - 15.20 Write the equation relating to , and define...Ch. 15 - 15.21 The equilibrium constant () for the...Ch. 15 - What is K p at 1273°C for the reaction 2CO ( g ) +...Ch. 15 - 15.23 The equilibrium constant for the...Ch. 15 - 15.24 Consider the reaction:
If the equilibrium...Ch. 15 - 15.25 A reaction vessel contains at equilibrium...Ch. 15 - 15.26 The equilibrium constant Kc for the...Ch. 15 - At equilibrium, the pressure of the reacting...Ch. 15 - The equilibrium constant K p for the reaction: PCl...Ch. 15 - Ammonium carbamate ( NH 4 CO 2 NH 2 ) decomposes...Ch. 15 - The following equilibrium constants were...Ch. 15 - 15.31 At a certain temperature, the following...Ch. 15 - 15.32 Pure phosgene gas , was placed in a 1.50-L...Ch. 15 - Consider the equilibrium: 2 NOBr( g ) ⇄ 2 NO( g...Ch. 15 - The following equilibrium constants have been...Ch. 15 - 15.35 The following equilibrium constants have...Ch. 15 - 15.36 The equilibrium constant for the reaction at...Ch. 15 - The following diagrams represent the equilibrium...Ch. 15 - 15.38 Outline the steps for calculating the...Ch. 15 - 15.39 The equilibrium constant K? for the...Ch. 15 - 15.40 For the synthesis of ammonia:
the...Ch. 15 - For the reaction: H 2 ( g ) + CO 2 ( g ) ⇄ H 2 O (...Ch. 15 - At 1000 K, a sample of pure NO, gas decomposes:...Ch. 15 - The equilibrium constant K c for the reaction H 2...Ch. 15 - The dissociation of molecular iodine into iodine...Ch. 15 - The equilibrium constant Kc for the decomposition...Ch. 15 - 15.46 Consider the following equilibrium process...Ch. 15 - 15.47 Consider the heterogeneous equilibrium...Ch. 15 - The equilibrium constant K c for the reaction: H 2...Ch. 15 - The aqueous reaction: L-glutamate + pyruvate ⇄...Ch. 15 - 15.50 Explain Le Châtelier’s principle. How does...Ch. 15 - Use Le Chatelier's principle to explain why the...Ch. 15 - 15.52 List four factors that can shift the...Ch. 15 - Does the addition of a catalyst have any effects...Ch. 15 - 15.54 Consider the following equilibrium system...Ch. 15 - 15.55 Heating solid sodium bicarbonate in a closed...Ch. 15 - 15.56 Consider the following equilibrium...Ch. 15 - 15.57 What effect does an increase in pressure...Ch. 15 - Prob. 58QPCh. 15 - Consider the following equilibrium process: PCl 5...Ch. 15 - Consider the reaction: 2SO 2 ( g ) ⇄ 2 SO 3 ( g )...Ch. 15 - In the uncatalyzed reaction: N 2 O 4 ( g ) ⇄ 2 NO...Ch. 15 - 15.62 Consider the gas-phase reaction:
Predict...Ch. 15 - Consider the following equilibrium reaction in a...Ch. 15 - 15.64 The following diagrams show the reaction at...Ch. 15 - 15.65 The following diagrams show an equilibrium...Ch. 15 - 15.66 Consider the reaction . The first diagram...Ch. 15 - Prob. 67APCh. 15 - Consider the equilibrium system 3A → B . Sketch...Ch. 15 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 15 - Consider the following reaction at equilibrium: A...Ch. 15 - Prob. 71APCh. 15 - 15.72 Consider the following reacting...Ch. 15 - 15.73 At a certain temperature and a total...Ch. 15 - The decomposition of ammonium hydrogen sulfide: N...Ch. 15 - 15.75 Consider the following reaction at a certain...Ch. 15 - When heated, ammonium carbamate decomposes as...Ch. 15 - A mixture of 0 .47 mole of H2 and 3 .59 moles of...Ch. 15 - When heated at high temperatures, iodine vapor...Ch. 15 - 15.79 One mole of and three moles of are placed...Ch. 15 - At 1130°C , the equilibrium constant ( K c ) for...Ch. 15 - For the purpose of determining K p using Equation...Ch. 15 - The following diagram represents a gas-phase...Ch. 15 - 15.83 Consider the following reaction at
When...Ch. 15 - 15.84 A quantity of 0.20 mole of carbon dioxide...Ch. 15 - 15.85 When dissolved in water, glucose (com sugar)...Ch. 15 - 15 86 At room temperature, solid iodine is in...Ch. 15 - 15.87 A student placed a few ice cubes in a...Ch. 15 - 15.88 A mixture containing 3.9 moles of and 0.88...Ch. 15 - 15.89 The equilibrium constant for the...Ch. 15 - When heated, a gaseous compound A dissociates as...Ch. 15 - 15.91 When a gas was heated under atmospheric...Ch. 15 - The first diagram represents a system at...Ch. 15 - A sealed glass bulb contains a mixture of NO 2 and...Ch. 15 - At 20°C , the vapor pressure of water is 0.0231...Ch. 15 - A 2.50-mol sample of NOCl was initially in a...Ch. 15 - 15.96 About 75 percent of hydrogen for industrial...Ch. 15 - Water is a very weak electrolyte that undergoes...Ch. 15 - 15.98 Consider the following reaction, which takes...Ch. 15 - The equilibrium constant Kc for the reaction: 2NH...Ch. 15 - At 25°C, a mixture of NO 2 and N 2 O 4 gases are...Ch. 15 - 15.101 Consider the reaction between and in a...Ch. 15 - In 1899 the German chemist Ludwig Mond developed a...Ch. 15 - For which of the following reactions is K c equal...Ch. 15 - The equilibrium constant K p for the following...Ch. 15 - At 1024°C, , the pressure of oxygen gas from the...Ch. 15 - 15.06 The equilibrium constant for the following...Ch. 15 - 15.107 Industrially, sodium metal is obtained by...Ch. 15 - Consider the equilibrium reaction described in...Ch. 15 - The K p for the reaction: SO 2 Cl 2 ( g ) ⇄ SO 2 (...Ch. 15 - The "boat" form and the “chair" form of...Ch. 15 - A quantity of 6.75 g of SO 2 Cl 2 was placed in a...Ch. 15 - 15.112 Industrial production of ammonia from...Ch. 15 - 15.113 The equilibrium constant for the formation...Ch. 15 - Consider the reaction: 2NO( g )+ O 2 ( g ) ⇄ 2N O...Ch. 15 - The formation of SO 3 from SO 2 and O 2 is an...Ch. 15 - At 25°C , the equilibrium partial pressures of N O...Ch. 15 - 15.117 The vapor pressure of mercury is 0.0020...Ch. 15 - 15.118 Both ' and are important biological ions....Ch. 15 - Photosynthesis can be represented by: 6C O 2 ( g...Ch. 15 - Consider the decomposition of ammonium chloride at...Ch. 15 - 15.121 Eggshells are composed mostly of calcium...Ch. 15 - In the gas phase, nitrogen dioxide is actually a...Ch. 15 - Consider the potential-energy diagrams for two...Ch. 15 - Iodine is sparingly soluble in water but much more...Ch. 15 - The dependence of the equilibrium constant of a...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...Ch. 15 - Lime is used to prevent from escaping from the...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Why is it that the range of resting blood pressures of humans is best represented by a bell-shaped curve co...
Human Biology: Concepts and Current Issues (8th Edition)
To test your knowledge, discuss the following topics with a study partner or in writing ideally from memory. Th...
HUMAN ANATOMY
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Give the IUPAC name for each compound.
Organic Chemistry
Label each statement about the polynucleotide ATGGCG as true or false. The polynucleotide has six nucleotides. ...
General, Organic, and Biological Chemistry - 4th edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Determine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forward
- Indicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forwardIndicate the correct options when referring to Luther's equation:1. It is not always easy to compare its results with experimental results.2. It depends on the number of electrons exchanged in the species involved.3. Its foundation is thermodynamic.4. The values calculated with it do not depend on temperature.arrow_forward
- Indicate which of the unit options correspond to a measurement of current density.1. A s m-22. mC s-1 m-23. Ω m-24. V J-1 m-2arrow_forwardIndicate the options that are true when referring to electrode membranes:1. The Donnan potential, in general, does not always intervene in membranes.2. There are several ways to classify the same membrane.3. Any membrane can be used to determine the pH of a solution.4. Only one solution and one membrane are needed to determine the pH of that solution.arrow_forwardCalculate the maximum volume of carbon dioxide gasarrow_forward
- In galvanic cells, their potential1. can be measured with a potentiometer2. does not depend on the equilibrium constant of the reaction occurring within them3. is only calculated from the normal potentials of the electrodes they comprise4. can sometimes be considered a variation in a potential differencearrow_forwardIf some molecules in an excited state collide with other molecules in a ground state, this process1. can occur in solution and in the gas phase.2. can be treated as a bimolecular process.3. always results in collisional deactivation.4. does not compete with any other process.arrow_forwardRadiation of frequency v is incident on molecules in their ground state. The expected outcome is that1. the molecules do not change their state.2. the molecules transition to an excited state.3. the molecules undergo a secondary process.4. collisional deactivation occurs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning

Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY