Translate each of these nested quantifications into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers. a) ∃ x ∀ y ( x + y = y ) b) ∀ x ∀ y ( ( ( x ≥ 0 ) ∧ ( y < 0 ) ) → ( x − y > 0 ) ) c) ∃ x ∃ y ( ( ( x ≤ 0 ) ∧ ( y ≤ 0 ) ) ∧ ( x − y > 0 ) ) d) ∀ x ∀ y ( ( ( x ≠ 0 ) ∧ ( y ≠ 0 ) ) ↔ ( x y ≠ 0 ) )
Translate each of these nested quantifications into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers. a) ∃ x ∀ y ( x + y = y ) b) ∀ x ∀ y ( ( ( x ≥ 0 ) ∧ ( y < 0 ) ) → ( x − y > 0 ) ) c) ∃ x ∃ y ( ( ( x ≤ 0 ) ∧ ( y ≤ 0 ) ) ∧ ( x − y > 0 ) ) d) ∀ x ∀ y ( ( ( x ≠ 0 ) ∧ ( y ≠ 0 ) ) ↔ ( x y ≠ 0 ) )
Translate each of these nested quantifications into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers.
a)
∃
x
∀
y
(
x
+
y
=
y
)
b)
∀
x
∀
y
(
(
(
x
≥
0
)
∧
(
y
<
0
)
)
→
(
x
−
y
>
0
)
)
c)
∃
x
∃
y
(
(
(
x
≤
0
)
∧
(
y
≤
0
)
)
∧
(
x
−
y
>
0
)
)
d)
∀
x
∀
y
(
(
(
x
≠
0
)
∧
(
y
≠
0
)
)
↔
(
x
y
≠
0
)
)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY