
The elastic modulus and tensile strength of the poly (methyl methacrylate) from the stress strain data given in Figure 15.3 at room temperature

Answer to Problem 1QAP
The calculated elastic modulus of the poly (methyl methacrylate) is slightly greater than the maximum value of elastic modulus given in the Table 15.2 that is
The tensile strength (stress) found from the Figure 15.3 (
Explanation of Solution
Write the relation between elastic modulus, tensile strength and strain.
Here,
Conclusion:
Refer to Figure 15.3. “The influence of temperature on the stress strain characteristics of poly (methyl methacrylate)”.
The stress and strain corresponding to the temperature curve of
From Figure 1.
Let, the initial stress and strain corresponding to the temperature curve of
Let, the final stress and strain corresponding to the temperature curve of
Calculate the elastic modulus.
Substitute
Thus, the elastic modulus of poly (methyl methacrylate) is
Refer to Table 15.2, “Room-Temperature
The elastic modulus corresponding to poly (methyl methacrylate) is
Hence, the calculated elastic modulus of the poly (methyl methacrylate) is slightly greater than the maximum value of elastic modulus given in the Table 15.2 that is
From Figure 1.
The tensile strength (stress) at the end of the curve corresponding to the temperature curve of
Refer to Table 15.2, “Room-Temperature mechanical characteristics of some of the more common polymers”.
The tensile strength (stress) corresponding to poly (methyl methacrylate) is
Hence, the tensile strength (stress) found from the Figure 15.3 (
Want to see more full solutions like this?
Chapter 15 Solutions
Materials Science and Engineering: An Introduction, 10th Edition EPUB Reg (Access) Card and Abridged (Loose-Leaf) Print Companion Set (NEW!!)
- What is business intelligence? Share the Business intelligence (BI) tools you have used and explain what types of decisions you made.arrow_forwardConsider the circuit Below: A) Find and show the Thevenin equivalent with respect to terminals a,b B) Find and show the Norton equivalent with respect to terminals a,b C)Find the value of Ro and the maximum power delivered across it when its adjusted such that the power across it is the maximum possible when connected in this fashionarrow_forwardConsider the Circuit Below: A)Find Vo if Vin is 0.2 volts and the positive and negative power supply voltages are +15v and -15v respectively. B)What is the Maximum of Vin that will not hit saturation for this circuit?arrow_forward
- for the values: M1=0.41m, M2=1.8m, M3=0.56m, please account for these in the equations. also please ensure that the final answer is the flow rate in litres per second for each part. please use bernoullis equation where needed if an empirical solutions i srequired. also The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardA shunt generator is rated at 125V, 25KW; armature resistance is 0.08 ohms, shunt field resistance is 25 ohms. What are: Armature voltage at rated load, armature power loss, shunt field power loss Total power generated in the armature?arrow_forwardSolve this problem and show all of the workarrow_forward
- I need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardA 12KW, 240V 1500RPM shunt generator has an armature resistance of .02 ohm and a shunt field resistance of 160 ohms. The stray power losses are 900W. Assuming a constant shunt field current, what (1) the efficiency at rated load and (2) the efficiency of the generator at half-rated load?arrow_forwardSolve this problem and show all of the workarrow_forward
- Problem 2: An athlete, starting from rest, pulls handle A to the left with a constant force of P = 150 [N]. Knowing that after the handle A has been pulled 0.5 [m], its velocity is 5 [m/s] to the left, determine: a) A position constraint equation using the given coordinate system. b) An acceleration constraint equation. c) The acceleration of A using kinematics equations. d) The acceleration of B using your constraint equation. e) How much weight (magnitude) the athlete is lifting in pounds using Newton's 2nd Law. You must draw a FBD and KD of the circled assembly, assuming the pulleys are massless. Note: 1 [lbf] = 4.448 [N]. ХА Увarrow_forwardSolve thisarrow_forwardSolve this please and fastarrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





