
A company makes two types of products, A and B. These products are produced during a 40-hr work week and then shipped out at the end of the week. They require 20 and 5 kg of raw material per kg of product, respectively, and the company has access to 9500 kg of raw material per week. Only one product can be created at a time with production times for each of 0.04 and 0.12 hr, respectively. The plant can only store 550 kg of total product per week. Finally, the company makes profits of $45 and $20 on each unit of A and B, respectively. Each unit of product is equivalent to a kg.
(a) Set up the linear programming problem to maximize profit.
(b) Solve the linear programming problem graphically.
(c) Solve the linear programming problem with the simplex method.
(d) Solve the problem with a software package.
(e) Evaluate which of the following options will raise profits the most: increasing raw material, storage, or production time.
(a)

The linear programming problem to maximize the profit if the company makes profits of $45 on each unit of A and $20 on each unit of B.
Answer to Problem 1P
Solution:
The linear programming problem to maximize the profit is,
Subject to the constraints:
Explanation of Solution
Given Information:
Product A and B are produced during a 40-hr of work week.
Company has access to 9500 kg of raw material per week.
Company required 20 kg of raw material per kg of product A and 5 kg of raw material per kg of product B.
One product of A can be created in 0.04 hour and one product of B can be created in 0.12 hour.
Plant can store 550 kg of total product per week.
And, the company makes profits of $45 on each unit of A and $20 on each unit of B.
Assume
Therefore, total number of products is
But plant can store 550 kg of total product per week. Therefore, the storage constrain is,
Company required 20 kg of raw material per kg of product A and 5 kg of raw material per kg of product B. Therefore, total raw material per week is,
But the company has access to 9500 kg of raw material per week. Therefore, raw material constraint is,
One product of A can be created in 0.04 hour and one product of B can be created in 0.12 hour. Therefore, the total production time is,
Since, product A and B are produced during a 40-hr of work week. Therefore, the production time constraint is,
Since, the amount of product cannot be negative. Therefore, the positivity constraint is,
Now, the company makes profits of $45 on each unit of A and $20 on each unit of B. Therefore, maximum profit is,
Subject to the constraints:
(b)

To calculate: The solution of the linear programming problem,
Subject to the constraints:
By the graphical method.
Answer to Problem 1P
Solution:
The maximum value of P is approximately
Explanation of Solution
Given Information:
The linear programming problem,
Subject to the constraints:
Formula used:
The equation of a straight line is,
Where, m is the slope and C is the intercept of y.
Calculation:
Consider the linear programming problem,
Subject to the constraints:
Reformulate the constraints to straight lines by replacing inequality by equal sign and solving for
The above equations are the equation of straight lines and represent the constraints.
The value of P in the objective function
Plot all the straight lines.
The graph obtained is,
Hence, the maximum value of P is approximately
(c)

The solution of the linear programming problem,
Subject to the constraints:
By the Simplex method.
Answer to Problem 1P
Solution:
The values of variables are
Explanation of Solution
Given Information:
The linear programming problem,
Subject to the constraints:
Consider the provided linear programming problem,
Subject to the constraints:
First convert the above problem to standard form by adding slack variables.
As the constraints are subjected to less than condition, non- negative slack variables are added to reach equality.
Let the slack variables be
Thus, the linear programming model would be:
Subject to the constraints:
The above linear programming models consist of three non-basic variables
Now the apply the Simplex method and solve the above problem as:
Basic | Solution | Intercept | ||||||
1 | -45 | -20 | 0 | 0 | 0 | 0 | ||
0 | 20 | 5 | 1 | 0 | 0 | 9500 | 475 | |
0 | 0.04 | 0.12 | 0 | 1 | 0 | 40 | 1000 | |
0 | 1 | 1 | 0 | 0 | 1 | 550 | 550 |
The negative minimum, P is
The minimum ratio is 475 and it corresponds to basis variable S 1. So, the leaving variable is S 1.
Therefore, the pivot element is 20.
Basic | Solution | Intercept | ||||||
1 | 0 | -8.75 | 2.25 | 0 | 0 | 21375 | ||
0 | 1 | 0.25 | 0.05 | 0 | 0 | 475 | 1900 | |
0 | 0 | 0.11 | -0.002 | 1 | 0 | 21 | 190.9090 | |
0 | 0 | 0.75 | -0.05 | 0 | 1 | 75 | 100 |
The negative minimum, P is
The minimum ratio is 100 and it corresponds to basis variable S 3. So, the leaving variable is S 3.
Therefore, the pivot element is 0.75.
Basic | Solution | Intercept | ||||||
1 | 0 | 0 | 1.6667 | 0 | 11.6667 | 22250 | ||
0 | 1 | 0 | 0.0667 | 0 | -0.3333 | 450 | 1900 | |
0 | 0 | 0 | 0.0053 | 1 | -0.1467 | 10 | 190.9090 | |
0 | 0 | 1 | -0.0667 | 0 | 1.3333 | 100 | 100 |
Since
Hence, the values of variables are
(d)

The solution of the linear programming problem,
Subject to the constraints:
By the use of software.
Answer to Problem 1P
Solution:
The maximum profitis
Explanation of Solution
Given Information:
The linear programming problem,
Subject to the constraints:
Use excel solver as below, to solve the linear programming,
Step 1: Enter the coefficients of
Step 2: Use formulas in column D to find total are as below,
Step 3: click on Solver button under the Data Ribbon. Set the values in pertinent cells of Solver dialogue box as below:
Step 4: Press the solve button.
The result obtained as,
Hence, the maximum value profitis
(e)

The constraint among increasing raw material, storage or production time that gives the maximum profit.
Answer to Problem 1P
Solution:
The storage will give the maximum profit.
Explanation of Solution
Given Information:
The linear programming problem,
Subject to the constraints:
To obtain the maximum profit, the shadow price should be high.
Use excel as below to find the shadow price by generating the sensitivity report,
Follow same steps up to the step 4 of part (d) then select the report as sensitivity as below,
The sensitivity report for the linear programming problem is as follows:
From the above sensitivity report, it is observed that the storage has a high shadow price.
Hence, the storage will give the maximum profit.
Want to see more full solutions like this?
Chapter 15 Solutions
Numerical Methods for Engineers
- 1. Show that f(x) = x3 is not uniformly continuous on R. 2. Show that f(x) = 1/(x-2) is not uniformly continuous on (2,00). 3. Show that f(x)=sin(1/x) is not uniformly continuous on (0,л/2]. 4. Show that f(x) = mx + b is uniformly continuous on R. 5. Show that f(x) = 1/x2 is uniformly continuous on [1, 00), but not on (0, 1]. 6. Show that if f is uniformly continuous on [a, b] and uniformly continuous on D (where D is either [b, c] or [b, 00)), then f is uniformly continuous on [a, b]U D. 7. Show that f(x)=√x is uniformly continuous on [1, 00). Use Exercise 6 to conclude that f is uniformly continuous on [0, ∞). 8. Show that if D is bounded and f is uniformly continuous on D, then fis bounded on D. 9. Let f and g be uniformly continuous on D. Show that f+g is uniformly continuous on D. Show, by example, that fg need not be uniformly con- tinuous on D. 10. Complete the proof of Theorem 4.7. 11. Give an example of a continuous function on Q that cannot be continuously extended to R. 12.…arrow_forwardcan I see the steps for how you got the same answers already provided for μ1->μ4. this is a homework that provide you answers for question after attempting it three triesarrow_forward1. Prove that for each n in N, 1+2++ n = n(n+1)/2. 2. Prove that for each n in N, 13 +23+ 3. Prove that for each n in N, 1+3+5+1 4. Prove that for each n ≥ 4,2" -1, then (1+x)" ≥1+nx for each n in N. 11. Prove DeMoivre's Theorem: fort a real number, (cost+i sint)" = cos nt + i sinnt for each n in N, where i = √√-1.arrow_forward
- Pls help ASAParrow_forward2. Sam and Deb have a weekly net income of $1500. They have a pet dog. Their monthly expenses, not related to housing, are $2875. They have savings of $32 000. They are considering two housing options: Option 1: Renting a 2-bedroom condo for $1650 a month, plus utilities averaging $210 a month Option 2: Buying a 2-bedroom condo for a down payment of $24 500, bi-weekly mortgage payments of $1100, and a monthly condo fee of $475 a) Determine the monthly cost of each housing option. Factoring in other expenses not related to housing, which one can Sam and Deb afford? b) Suppose their dog falls ill and they have to pay $85 every week to cover veterinarian and medical expenses. Calculate the additional monthly expenses. How much money would be available for savings if they choose housing option 2?arrow_forwardI bought sparrows at 3 for a penny, turtle doves at 2 for a penny, anddoves at 2 pence each. If I spent 30 pence buying 30 birds and boughtat least one of each kind of bird, how many birds of each kind did I buy?(This is a problem from Fibonacci’s Liber Abaci, 1202.)arrow_forward
- 2. Jacob is going to college. He has a part-time job with take-home pay of $575 every two weeks. He has received a scholarship for $5500 for the year. Determine Jacob's total monthly income.arrow_forward1. Pira's expenses are $850 a month for rent and utilities, $52 a month for TV and Internet package, $90 a week for food, $110 a month for a bus pass, $25 a week for entertainment, and $85 every two weeks for miscellaneous expenses. a) Convert each expense to a monthly amount and represent each monthly amount as a percentage. b) Create a circle graph that shows the breakdown of the monthly expenses. c) Pira has an income of $1600/biweekly and is deciding whether a weeklong vacation to Florida would be within her budget. The cost of the trip is approximately $2000 per week. Would you recommend for her to take the one weeklong vacation? Explain.arrow_forward4. Mason works at a part-time job earning $985 every two weeks. Mason's expenses are $750 a month for rent and utilities, $75 a month for her cell phone, $350 a month for food, $35 a week for entertainment, $310 a month for her car loan payment, and $65 every two weeks for miscellaneous expenses. How long will it take Mason to save $2000 for a vacation? Round your answer to the nearest month.arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning




