Given the following function,
use a software package to determine the minimum:
(a) Graphically.
(b) Numerically.
(c) Substitute the result of (b) back into the function to determine the minimum
(d) Determine the Hessian and its determinant, and substitute the result of part (b) back into the latter to verify that a minimum has been detected.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Numerical Methods for Engineers
- 44 4. Write the function f(x)=2+ ANALYTIC FUNCTIONS 1 (z = 0) Z. in the form f(z) = u(r, 0) + iv(r, 0). Ans. f(z) = = (1 + ² ) cos+ir i ( r — 1 ) sin 0. r CHAP. 2arrow_forwardGiven the (3-2-1) Euler angle set (10,20,30) degrees, find the equivalent (3-1-3) Euler angles. All the following Euler angle sets are 3-2-1 Euler angles. The B frame relative to N is given through the 3-2-1 EAs (10,20,30) degrees, while R relative to N is given by the EAs (-5,5,5) degrees. What is the attitude of B relative to R in terms of the 3-2-1 EAsarrow_forward3. Suppose that f(z) = x² − y² −2y+i (2x-2xy), where z = x+iy. Use the expressions (see Sec. 6) x = z┼え 2 Z - Z and y = 2i to write f(z) in terms of z, and simplify the result. Ans. f(z)²+2iz.arrow_forward
- 10. Prove that a finite set of points Z1, Z2, Zn cannot have any accumulation points.arrow_forward6. Show that a set S is open if and only if each point in S is an interior point.arrow_forward2. Derive the component transformation equations for tensors shown be- low where [C] = [BA] is the direction cosine matrix from frame A to B. B[T] = [C]^[T][C]T 3. The transport theorem for vectors shows that the time derivative can be constructed from two parts: the first is an explicit frame-dependent change of the vector whereas the second is an active rotational change of the vector. The same holds true for tensors. Starting from the previous result, derive a version of transport theorem for tensors. [C] (^[T])[C] = dt d B dt B [T] + [WB/A]B[T] – TWB/A] (10 pt) (7pt)arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage