College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 17CQ
A bullet can travel at a speed of over 1000 m/s. When a bullet is fired from a rifle, the actual firing makes a distinctive sound, but people at a distance may hear a second, different sound that is even louder. Explain the source of this sound.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 15 - a. In your own words, define what a transverse...Ch. 15 - a. In your own words, define what a longitudinal...Ch. 15 - Is it ever possible for one sound wave in air to...Ch. 15 - A wave pulse travels along a string at a speed of...Ch. 15 - Harbor seals, like many animals, determine the...Ch. 15 - A thermostat on the wall of your house keeps track...Ch. 15 - When water freezes, the density decreases and the...Ch. 15 - Figure Q15.9 Q shows a history graph of the motion...Ch. 15 - Figure Q15.10 Q shows a history graph and a...Ch. 15 - Prob. 11CQ
Ch. 15 - Bottlenose dolphins use echolocation pulses with a...Ch. 15 - Some bat species have auditory systems that work...Ch. 15 - Prob. 14CQCh. 15 - When you want to snap a towel, the best way to...Ch. 15 - The volume control on a stereo is designed so that...Ch. 15 - A bullet can travel at a speed of over 1000 m/s....Ch. 15 - Prob. 19CQCh. 15 - Denver, Colorado, has an oldies station that calls...Ch. 15 - What is the frequency of blue light with a...Ch. 15 - Ultrasound can be used to deliver energy to...Ch. 15 - A sinusoidal wave traveling on a string has a...Ch. 15 - Two strings of different linear density are joined...Ch. 15 - You stand at x = 0 m, listening to a sound that is...Ch. 15 - The wave speed on a string under tension is 200...Ch. 15 - The wave speed on a string is 150 m/s when the...Ch. 15 - The back wall of an auditorium is 26.0 m from the...Ch. 15 - A hammer taps on the end of a 4.00-m-long metal...Ch. 15 - In an early test of sound propagation through the...Ch. 15 - Prob. 6PCh. 15 - An earthquake 45 km from a city produces P and S...Ch. 15 - A stationary boat in the ocean is experiencing...Ch. 15 - Figure P15.9 Q is a snapshot graph of a wave at t...Ch. 15 - Figure P15.10Q is a snapshot graph of a wave at t...Ch. 15 - Figure P15.11 is a history graph at x = 0 m of a...Ch. 15 - A sinusoidal wave has period 0.20 s and wavelength...Ch. 15 - A sinusoidal wave travels with speed 200 m/s. Its...Ch. 15 - The motion detector used in a physics lab sends...Ch. 15 - The displacement of a wave traveling in the...Ch. 15 - A traveling wave has displacement given by y(x, t)...Ch. 15 - Figure P15.18 is a snapshot graph of a wave at t =...Ch. 15 - Figure P15.19 is a history graph at x = 0 m of a...Ch. 15 - A boat is traveling at 4.0 m/s in the same...Ch. 15 - In the deep ocean, a water wave with wavelength 95...Ch. 15 - People with very good pitch discrimination can...Ch. 15 - A dolphin emits ultrasound at 100 kHz and uses the...Ch. 15 - a. What is the wavelength of a 2.0 MHz ultrasound...Ch. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Sound is detected when a sound wave causes the...Ch. 15 - At a rock concert, the sound intensity 1.0 m in...Ch. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - A large solar panel on a spacecraft in Earth orbit...Ch. 15 - Prob. 34PCh. 15 - LASIK eye surgery uses pulses of laser light to...Ch. 15 - At noon on a sunny day, the intensity of sunlight...Ch. 15 - Prob. 37PCh. 15 - What is the sound intensity level of a sound with...Ch. 15 - What is the sound intensity of a whisper at a...Ch. 15 - You hear a sound at 65 dB. What is the sound...Ch. 15 - The sound intensity from a jack hammer breaking...Ch. 15 - A concert loudspeaker suspended high off the...Ch. 15 - A rock band playing an outdoor concert produces...Ch. 15 - Your ears are sensitive to differences in pitch,...Ch. 15 - 30 seconds of exposure to 115 dB sound can damage...Ch. 15 - A woman wearing an in-ear hearing aid listens to a...Ch. 15 - An opera singer in a convertible sings a note at...Ch. 15 - An ospreys call is a distinct whistle at 2200 Hz....Ch. 15 - A whistle you use to call your hunting dog has a...Ch. 15 - An echocardiogram uses 4.4 MHz ultrasound to...Ch. 15 - Prob. 51PCh. 15 - While anchored in the middle of a lake, you count...Ch. 15 - A Doppler blood flow unit emits ultrasound at 5.0...Ch. 15 - A train whistle is heard at 300 Hz as the train...Ch. 15 - Oil explorers set off explosives to make loud...Ch. 15 - A 2.0-m-long string is under 20 N of tension. A...Ch. 15 - A female orb spider has a mass of 0.50 g. She is...Ch. 15 - A spider spins a web with silk threads of density...Ch. 15 - In 2003, an earthquake in Japan generated 1.1 Hz...Ch. 15 - Prob. 60GPCh. 15 - An earthquake produces longitudinal P waves that...Ch. 15 - Figure P15.62 Q shows two snapshot graphs taken 10...Ch. 15 - Low-frequency vertical oscillations are one...Ch. 15 - A wave on a string is described by y(x, t) = (3.0...Ch. 15 - Write the y-equation for a wave traveling in the...Ch. 15 - Write the y-equation for a wave traveling in the...Ch. 15 - A wave is described by the expression y(x, t) =...Ch. 15 - A point on a string undergoes simple harmonic...Ch. 15 - a. A typical 100 W lightbulb produces 4.0 W of...Ch. 15 - Prob. 70GPCh. 15 - A dark blue cylindrical bottle is 22 cm high and...Ch. 15 - Assume that the opening of the ear canal has a...Ch. 15 - The sound intensity 50 m from a wailing tornado...Ch. 15 - One of the loudest sound generators ever created...Ch. 15 - A harvest mouse can detect sounds below the...Ch. 15 - Prob. 76GPCh. 15 - A physics professor demonstrates the Doppler...Ch. 15 - When the heart pumps blood into the aorta, the...Ch. 15 - Although we cant hear them, the ultrasonic pulses...Ch. 15 - Bats are sensitive to very small changes in...Ch. 15 - Some bats have specially shaped noses that focus...Ch. 15 - Some bats utilize a sound pulse with a rapidly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In mechanism, photophosphorylation is most similar to A. substrate-level phosphorylation in glycolysis. B. oxid...
Campbell Biology in Focus (2nd Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
30. Drosophila has a diploid chromosome number of 2n = 8, which includes one pair of sex chromosomes (XX in fem...
Genetic Analysis: An Integrated Approach (3rd Edition)
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
WHAT IF? A chicken has 78 chromosomes in its somatic cells. How many chromosomes did the chicken inherit from ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Female Aedes aegypti mosquitoes emit a buzz at about 4.00102 Hz, whereas male A. aegypti mosquitoes typically emit a buzz at about 6.00102 Hz. As a female mosquito is approaching a stationary male mosquito, is it possible that he mistakes the female for a male because of the Doppler shift of the sound she emits? How fast would the female have to be traveling relative to the male for him to make this mistake? Assume the speed of sound in the air is 343 m/s.arrow_forwardAn interstate highway has been built through a neighborhood in a city. In the afternoon, the sound level in an apartment in the neighborhood is 80.0 dB as 100 cars pass outside the window every minute. Late at night, the traffic flow is only five cars per minute. What is the average late-night sound level?arrow_forwardA source of sound vibrates with constant frequency. Rank the frequency of sound observed in the following cases from highest to the lowest. If two frequencies are equal, show their equality in your ranking. All the motions mentioned have the same speed, 25 m/s. (a) The source and observer are stationary. (b) The source is moving toward a stationary observer. (c) The source is moving away from a stationary observer. (d) The observer is moving toward a stationary source. (e) The observer is moving away from a stationary source.arrow_forward
- An ambulance moving at 42 m/s sounds its siren whose frequency is 450 Hz. A car is moving in the same direction as the ambulance at 25 m/s. What frequency does a person in the car hear (a) as the ambulance approaches the car? (b) Alter the ambulance passes the car?arrow_forwardA train is moving past a crossing where cars are waiting for it to pass. While waiting, the driver of the lead car becomes sleepy and rests his head on the steering wheel, unintentionally activating the cars horn. A passenger in the back of the train hears the horns sound at a frequency of 428 Hz and a passenger in the front hears it at 402 Hz. Find (a) the trains speed and (b) the horns frequency, assuming the sound travels along the tracks.arrow_forwardOn a particular day the speed of sound in air is 340 m/s. If a plane flies at a speed of 680 m/s, is its Mach number (a) 1.5, (b) 2.0, (c) 2.5, or (d) 2.7?arrow_forward
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardDuring a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forward
- A siren mounted 011 the roof of a firehouse emits sound at a frequency of 900 Hz. A steady wind is blowing with a speed of 15.0 m/s. Taking the speed of sound in calm air to be 343 m/s. find the wavelength of the sound (a) upwind of the siren and (b) downwind of the siren. Firefighters are approaching the siren from various directions at 15.0 m/s. What frequency does a firefighter hear (c) if she is approaching from an upwind position so that site is moving in the direction in which the wind is blowing and (d) if she is approaching from a downwind position and moving against the wind?arrow_forwardThe Doppler equation presented in the text is valid when the motion between the observer and the source occurs on a straight line so that the source and observer are moving either directly toward or directly away from each other. If this restriction is relaxed, one must use the more general Doppler equation f=(v+vocosovvscoss)f where o and s are defined in figure P13.7la. Use the preceding equation to solve the following problem. A train moves at a constant speed of v = 25.0 m/s toward the intersection shown in Figure P13.71b. A car is stopped near the crossing, 30.0 m from the tracks. The trains horn emits a frequency of 500 Hz when the train is 40.0 m from the intersection. (a) What is the frequency heard by the passengers in the car? (b) If the train emits this sound continuously and the car is stationary at this position long before the train arrives until long after it leaves, what range of frequencies do passengers in the car hear? (c) Suppose the car is foolishly trying to beat the train to the intersection and is traveling at 40.0 m/s toward the tracks. When the car is 30.0 m from the tracks and the train is 40.0 m from the intersection, what is the frequency heard by the passengers in the car now?arrow_forwardTwo trains on separate tracks move toward each other. Train 1 has a speed of 1.30 102 km/h; train 2, a speed of 90.0 km/h. Train 2 blows its horn, emitting a frequency of 5.00 102 Hz. What is the frequency heard by the engineer on train 1?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY