The Essential Cosmic Perspective (8th Edition)
8th Edition
ISBN: 9780134446431
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 16EAP
We did not understand the true size and shape of our galaxy until NASA launched satellites into the galactic halo, enabling us to see what the Milky Way looks like from the outside.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Sun is located in
a.
the center of the Milky Way Galaxy
b.
the bulge of the Milky Way Galaxy
c.
the halo of the Milky Way Galaxy
d.
the disk of the Milky Way Galaxy
Imagine that you have achieved immortality and you used it to travel outside of the Milky Way (you will be leaving today and you will be traveling with the speed of 1/10th of the speed of light). Describe how the Milky Way would look from the outside if you could watch it for the next 100 billion years.
Suppose that stars were born at random times over the last 1010 years. The rate of star formation is simply the number of stars divided by 1010 years. The fraction of stars with detected extrasolar planets is at least 11 %. The rate of star formation can be multiplied by this fraction to find the rate planet formation. How often (in years) does a planetary system form in our galaxy? Assume the Milky Way contains 3 × 1011 stars.
Chapter 15 Solutions
The Essential Cosmic Perspective (8th Edition)
Ch. 15 - Prob. 1VSCCh. 15 - Prob. 2VSCCh. 15 - Prob. 3VSCCh. 15 - Prob. 4VSCCh. 15 - Prob. 5VSCCh. 15 - Prob. 6VSCCh. 15 - Prob. 1EAPCh. 15 - Prob. 2EAPCh. 15 - 3. Describe and contrast stellar orbits in the...Ch. 15 - Prob. 4EAP
Ch. 15 - Prob. 5EAPCh. 15 - Prob. 6EAPCh. 15 - Prob. 7EAPCh. 15 - Prob. 8EAPCh. 15 - Prob. 9EAPCh. 15 - Prob. 10EAPCh. 15 - Prob. 11EAPCh. 15 - Prob. 12EAPCh. 15 - Prob. 13EAPCh. 15 - Prob. 14EAPCh. 15 - Prob. 15EAPCh. 15 - We did not understand the true size and shape of...Ch. 15 - Prob. 17EAPCh. 15 - Prob. 18EAPCh. 15 - Prob. 19EAPCh. 15 - Prob. 20EAPCh. 15 - Prob. 21EAPCh. 15 - Prob. 22EAPCh. 15 - Prob. 23EAPCh. 15 - Prob. 24EAPCh. 15 - Prob. 25EAPCh. 15 - Prob. 26EAPCh. 15 - Prob. 27EAPCh. 15 - Prob. 28EAPCh. 15 - Prob. 29EAPCh. 15 - Prob. 30EAPCh. 15 - Prob. 31EAPCh. 15 - Prob. 32EAPCh. 15 - Prob. 33EAPCh. 15 - Prob. 34EAPCh. 15 - Prob. 35EAPCh. 15 - Prob. 36EAPCh. 15 - Prob. 37EAPCh. 15 - Prob. 38EAPCh. 15 - Prob. 39EAPCh. 15 - Prob. 40EAPCh. 15 - Prob. 41EAPCh. 15 - Prob. 42EAPCh. 15 - Prob. 43EAPCh. 15 - Prob. 44EAPCh. 15 - Prob. 45EAPCh. 15 - Prob. 46EAPCh. 15 - Prob. 47EAPCh. 15 - Prob. 48EAPCh. 15 - Prob. 49EAPCh. 15 - Prob. 50EAPCh. 15 - Prob. 51EAPCh. 15 - Prob. 52EAPCh. 15 - Prob. 53EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the average mass of a star in the Galaxy is one-third of a solar mass. Use the value for the mass of the Galaxy that we calculated in Exercise 25.19, and estimate how many stars are in the Milky Way. Give some reasons it is reasonable to assume that the mass of an average star is less than the mass of the Sun.arrow_forwardWhat evidence contradicts the top-down hypothesis for the origin of our Galaxy?arrow_forwardSuppose the stars in an elliptical galaxy all formed within a few million years shortly after the universe began. Suppose these stars have a range of masses, just as the stars in our own galaxy do. How would the color of the elliptical change over the next several billion years? How would its luminosity change? Why?arrow_forward
- The Sun orbits the center of the Galaxy in 225 million years at a distance of 26,000 light-years. Given that a3=(M1+M2)P2 , where a is the semimajor axis and P is the orbital period, what is the mass of the Galaxy within the Sun’s orbit?arrow_forwardSuppose the Sagittarius dwarf galaxy merges completely with the Milky Way and adds 150,000 stars to it. Estimate the percentage change in the mass of the Milky Way. Will this be enough mass to affect the orbit of the Sun around the galactic center? Assume that all of the Sagittarius galaxy’s stars end up in the nuclear bulge of the Milky Way Galaxy and explain your answer.arrow_forwardUsing the information provided in Table 18.1, what is the average stellar density in our part of the Galaxy? Use only the true stars (types OM) and assume a spherical distribution with radius of 26 light-years. Stars within 21 Light-Years of the Sunarrow_forward
- Suppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.arrow_forwardArrange the following in order of increasing size: our Milky Way Galaxy; a globular star cluster; a pair of radio lobes around an active galaxy; a giant elliptical galaxy; the Solar System; the Local Group galaxy clusterarrow_forwardA given star orbits the center of its galaxy at an average speed of v_star, at a distance of r_star from the center. The galaxy has 2 spiral arms, and the arms themselves orbit slower than the star -- at the same radius, they orbit at a speed of v_arm (in the same direction as the star). The galaxy's age is t_gal. In the history of this galaxy, how many times did this star cross through a spiral arm? Values: v_star = 200 km/s, r_star = 9 kpc, v_arms = 46 km/s, t_gal = 4 Gyrarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY