
Carbon monoxide (CO) and nitric oxide (NO) are polluting gases contained in automobile exhaust. Under suitable conditions, these gases can be made to react to form nitrogen (N2) and the less harmful carbon dioxide (CO2). (a) Write an equation for this reaction. (b) Identify the oxidizing and reducing agents. (c) Calculate the Kp for the reaction at 25°C. (d) Under normal atmospheric conditions, the partial pressures are

Interpretation:
The different equilibrium terms should be calculated given the statements of atmospheric equilibrium reactions.
Concept Introduction:
Chemical equilibrium: The term applied to reversible chemical reactions. It is the point at which the rate of the forward reaction is equal to the rate of the reverse reaction. The equilibrium is achieved; the concentrations of reactant and products become constant.
Oxidizing reagent: This type of process gains of electrons and is reduced in chemical reaction, also electron acceptor the oxidizing agent in normally in one of its higher oxidation states it will gain electrons (e-) to be reduced.
Reducing reagent: This type of chemical process loses of electrons and oxidizing reactions, normally the reducing agent lower possible oxidation states and the electron donor. In other words loses of electrons undergoes for redox reaction. For example alkaline earth metals, carboxylic acids and sulfate compounds involved a reduction process.
Homogeneous equilibrium: A homogeneous equilibrium involved has a everything present in the same phase and same conditions, for example reactions where everything is a gas, or everything is present in the same solution.
Kp and Kc: This equilibrium constants of gaseous mixtures, these difference between the two constants is that Kc is defined by molar concentrations, whereas Kp is defined by the partial pressures of the gasses inside a closed system.
Exothermic reaction: This type of chemical reaction release energy by light or heat. Endothermic reaction: This type of chemical reactions that is accompanied by the absorption of heat.
Reaction quotient: This type of chemical equilibrium reaction proceeds likely to produced, given either the pressure (or) the concentration of the reactants and the products. The value can be compared to the equilibrium constant, to determine the direction of the reaction that is take place. Then reaction quotient (Qc) the indication of Q can be used to determine which direction will shift to reach of chemical equilibrium process.
Le Chatelier's Principle (Kp): The closed system is an increase in pressure, the equilibrium will shift towards the sides of the reaction with some moles of gas. The decrease in pressure the equilibrium will shift towards the side of the reaction with high moles of gas.
Answer to Problem 15.89QP
The atmospheric equilibrium reaction of given the different terms of process (a-e) are shown below.
Explanation of Solution
To Identify: Write the equilibrium reactions of given the statements (a and b).
(a) and (b)
Draw and analyze the given equilibrium reactions (a) and oxidizing, reducing reactions (b).
Analyzing Reaction (a): Above the reactions
To find: Calculate the partial pressure (Kp) values for given the equilibrium reaction at
Calculate and analyze the (Kp) values for statement (c).
Let us consider the following partial equilibrium equation
The given reaction is homogenous equilibrium reaction proceeds in same conditions (for example both reactant and product are proceeds in gas phase). Further the total equilibrium that is given CO2 and N2 two products are generated in
To Identify: Given the statements (d and e) reaction quintet (Qr) temperature must be analyzed.
Explanation:
(d) and (e)
Write and analyze the given equilibrium reactions (d and e).
Let us consider a statement (e).
Statement (d): The equal amount of CO and NO to produce CO2 and N2 this equilibrium reaction placed above if we increased pressure equilibrium will favor the reaction (product) decrease the total number of moles of gas. Here equilibrium should be shifted left to the right side, and produced more
Statement (e): Given the equilibrium process is endothermic (heat absorption reaction) and this equilibrium shifted into left side, when temperature decreased moreover this reaction get positive
The different statements of equilibrium process are derived given the atmospheric equilibrium reactions.
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry Atoms First, Second Edition
- please help with synthesisarrow_forward10. Stereochemistry. Assign R/S stereochemistry for the chiral center indicated on the following compound. In order to recieve full credit, you MUST SHOW YOUR WORK! H₂N CI OH CI カー 11. () Stereochemistry. Draw all possible stereoisomers of the following compound. Assign R/S configurations for all stereoisomers and indicate the relationship between each as enantiomer, diastereomer, or meso. NH2 H HNH, -18arrow_forwardb) 8. Indicate whether the following carbocation rearrangements are likely to occur Please explain your rational using 10 words or less not likely to occur • The double bond is still in the Same position + Likely to oc occur WHY? -3 H3C Brave Chair Conformers. Draw the chair conformer of the following substituted cyclohexane. Peform a RING FLIP and indicate the most stable conformation and briefly explain why using 20 words or less. CI 2 -cobs ?? MUST INDICATE H -2 -2 Br EQ Cl OR AT Br H& most stable WHY? - 4arrow_forward
- CH 12 Conformational Analysis. Draw all 6 conformers (one above each letter) of the compound below looking down the indicated bond. Write the letter of the conformer with the HIGHEST and LOWEST in energies on the lines provided. NOTE: Conformer A MUST be the specific conformer of the structure as drawn below -4 NOT HOH OH 3 Conformer A: Br OH A Samo Br H 04 Br H H3 CH₂ H anti stagere Br CH clipsed H Brott H IV H MISSING 2 -2 B C D E F X 6 Conformer with HIGHEST ENERGY: 13. (1 structure LOWEST ENERGY: Nomenclature. a) Give the systematic (IUPAC) name structure. b) Draw the corresponding to this name. HINT: Do not forget to indicate stereochemistry when applicable. a) ८८ 2 "Br {t༐B,gt)-bemn€-nehpརི་ཚ༐lnoa Parent name (noname) 4 Bromo Sub = 2-methylethyl-4 Bromo nonane b) (3R,4S)-3-chloro-4-ethyl-2,7-dimethyloctane # -2 -2arrow_forwardin the scope of the SCH4U course! please show all steps as im still learning how to format my answers in the format given, thank you!arrow_forwardhelp me solve this HWarrow_forward
- Molecules of the form AH2 can exist in two potential geometries: linear or bent. Construct molecular orbital diagrams for linear and bent CH2. Identify the relevant point group, include all of the appropriate symmetry labels and pictures, and fill in the electrons. Which geometry would you predict to be more stable, and why? (Please draw out the diagram and explain)arrow_forwardIndicate the variation in conductivity with concentration in solutions of strong electrolytes and weak electrolytes.arrow_forwardThe molar conductivity of a very dilute solution of NaCl has been determined. If it is diluted to one-fourth of the initial concentration, qualitatively explain how the molar conductivity of the new solution will compare with the first.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax





