Review. Why is the following situation impassible? You are in the high-speed package delivers’ business. Your competitor in the next building gains the right-of-way to build an evacuated tunnel just above the ground all the way around the Earth. By firing packages into this tunnel at just the right speed, your competitor is able to send the packages into orbit around the Earth in this tunnel so that they arrive on the exact opposite side of the Earth in a very short time interval. You come up with a competing idea. Figuring that the distance through the Earth is shorter than the distance around the Earth, you obtain permits to build an evacuated tunnel through the center of the Earth (Fig. P15.50). By simply dropping packages into this tunnel, they fall downward and arrive at the other end of your tunnel, which is in a building right next to the other end of your competitor’s tunnel. Because your packages arrive on the other side of the Earth in a shorter time interval, you win the competition and your business flourishes. Note: An object at a distance r from the center of the Earth is pulled toward the center of the Earth only by the mass within the sphere of radius r (the reddish region in Fig. P15.50). Assume the Earth has uniform density. Figure P15.50
Review. Why is the following situation impassible? You are in the high-speed package delivers’ business. Your competitor in the next building gains the right-of-way to build an evacuated tunnel just above the ground all the way around the Earth. By firing packages into this tunnel at just the right speed, your competitor is able to send the packages into orbit around the Earth in this tunnel so that they arrive on the exact opposite side of the Earth in a very short time interval. You come up with a competing idea. Figuring that the distance through the Earth is shorter than the distance around the Earth, you obtain permits to build an evacuated tunnel through the center of the Earth (Fig. P15.50). By simply dropping packages into this tunnel, they fall downward and arrive at the other end of your tunnel, which is in a building right next to the other end of your competitor’s tunnel. Because your packages arrive on the other side of the Earth in a shorter time interval, you win the competition and your business flourishes. Note: An object at a distance r from the center of the Earth is pulled toward the center of the Earth only by the mass within the sphere of radius r (the reddish region in Fig. P15.50). Assume the Earth has uniform density. Figure P15.50
Solution Summary: The author explains Kepler's third law, where the square of the orbital period of Earth is proportional to the cube of its radius. The time period for the competitor’s package to arrive at an arbitrary position
Review.Why is the following situation impassible? You are in the high-speed package delivers’ business. Your competitor in the next building gains the right-of-way to build an evacuated tunnel just above the ground all the way around the Earth. By firing packages into this tunnel at just the right speed, your competitor is able to send the packages into orbit around the Earth in this tunnel so that they arrive on the exact opposite side of the Earth in a very short time interval. You come up with a competing idea. Figuring that the distance through the Earth is shorter than the distance around the Earth, you obtain permits to build an evacuated tunnel through the center of the Earth (Fig. P15.50). By simply dropping packages into this tunnel, they fall downward and arrive at the other end of your tunnel, which is in a building right next to the other end of your competitor’s tunnel. Because your packages arrive on the other side of the Earth in a shorter time interval, you win the competition and your business flourishes. Note: An object at a distance r from the center of the Earth is pulled toward the center of the Earth only by the mass within the sphere of radius r (the reddish region in Fig. P15.50). Assume the Earth has uniform density.
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.