EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 15.82AP
To determine
The reason for which the following situation is impossible.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Calculate the value of the force F at which the 20 kg uniformly dense cabinet
will start to tip. Calculate the acceleration of the cabinet at this force F. Must
include the FBD and KD of the system. Ignore friction.
1) A 2.0 kg toy car travelling along a smooth horizontal surface experiences a horizontal force Fas shown in the
picture to the left. Assuming the rightward direction to be positive and if the car has an initial velocity of 60.0m/s
to the right, calculate the velocity of the car after the first 10.0s of motion. (Force is in Newtons and time in
seconds). (Hint: Use impulse-momentum theorem)
F
5.0
10
0
-10
3) Two bumper cars of masses 600 kg and 900 kg travelling (on a smooth surface) with velocities 8m/s and 4 m/s
respectively, have a head on collision. If the coefficient of restitution is 0.5. a) What sort of collision is this? b)
Calculate their velocities immediately after collision. c) If the coefficient of restitution was 1 instead of 0.5, what
is the amount of energy lost during collision?
Chapter 15 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 15 - A block on the end of a spring is pulled to...Ch. 15 - Consider a graphical representation (Fig. 15.3) of...Ch. 15 - Figure 15.4 shows two curves representing...Ch. 15 - An object of mass m is hung from a spring and set...Ch. 15 - The ball in Figure 15.13 moves in a circle of...Ch. 15 - The grandfather clock in the opening storyline...Ch. 15 - If a simple pendulum oscillates with small...Ch. 15 - You attach a block to the bottom end of a spring...Ch. 15 - A block-spring system vibrating on a frictionless,...Ch. 15 - An object-spring system moving with simple...
Ch. 15 - An object of mass 0.40 kg, hanging from a spring...Ch. 15 - A runaway railroad car, with mass 3.0 105 kg,...Ch. 15 - The position of an object moving with simple...Ch. 15 - If an object of mass m attached to a light spring...Ch. 15 - You stand on the end of a diving board and bounce...Ch. 15 - A mass-spring system moves with simple harmonic...Ch. 15 - A block with mass m = 0.1 kg oscillates with...Ch. 15 - For a simple harmonic oscillator, answer yes or no...Ch. 15 - The top end of a spring is held fixed. A block is...Ch. 15 - Which of the following statements is not true...Ch. 15 - A simple pendulum has a period of 2.5 s. (i) What...Ch. 15 - A simple pendulum is suspended from the ceiling of...Ch. 15 - A particle on a spring moves in simple harmonic...Ch. 15 - You are looking at a small, leafy tree. You do not...Ch. 15 - Prob. 15.2CQCh. 15 - If the coordinate of a particle varies as x = -A...Ch. 15 - A pendulum bob is made from a sphere filled with...Ch. 15 - Figure CQ15.5 shows graphs of the potential energy...Ch. 15 - A student thinks that any real vibration must be...Ch. 15 - The mechanical energy of an undamped block-spring...Ch. 15 - Is it possible to have damped oscillations when a...Ch. 15 - Will damped oscillations occur for any values of b...Ch. 15 - If a pendulum clock keeps perfect time al the base...Ch. 15 - Prob. 15.11CQCh. 15 - A simple pendulum can be modeled as exhibiting...Ch. 15 - Consider the simplified single-piston engine in...Ch. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - When a 4.25-kg object is placed on lop of a...Ch. 15 - A vertical spring stretches 3.9 cm when a 10-g...Ch. 15 - In an engine, a piston oscillates with simpler...Ch. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - A 1.00-kg object is attached to a horizontal...Ch. 15 - A simple harmonic oscillator takes 12.0 s to...Ch. 15 - A 7.00-kg object is hung from the bottom end of a...Ch. 15 - At an outdoor market, a bunch of bananas attached...Ch. 15 - A vibration sensor, used in testing a washing...Ch. 15 - (a) A hanging spring stretches by 35.0 cm when an...Ch. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - A ball dropped from a height of 4.00 m makes an...Ch. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - A particle moves in simple harmonic motion with a...Ch. 15 - A 1.00-kg glider attached to a spring with a force...Ch. 15 - A 0.500-kg object attached to a spring with a...Ch. 15 - You attach an object to the bottom end of a...Ch. 15 - To test the resiliency of its bumper during...Ch. 15 - A 200-g block is attached to a horizontal spring...Ch. 15 - A block of unknown mass is attached to a spring...Ch. 15 - A block-spring system oscillates with an amplitude...Ch. 15 - A particle executes simple harmonic motion with an...Ch. 15 - The amplitude of a system moving in simple...Ch. 15 - A 50.0-g object connected to a spring with a force...Ch. 15 - A 2.00-kg object is attached to a spring and...Ch. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 15.32PCh. 15 - While driving behind a car traveling at 3.00 m/s,...Ch. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - The angular position of a pendulum is represented...Ch. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 15.41PCh. 15 - A very light rigid rod of length 0.500 m extends...Ch. 15 - Review. A simple pendulum is 5.00 m long. What is...Ch. 15 - A small object is attached to the end of a string...Ch. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - A pendulum with a length of 1.00 m is released...Ch. 15 - A 10.6-kg object oscillates at the end of a...Ch. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - A baby bounces up and down in her crib. Her mass...Ch. 15 - As you enter a fine restaurant, you realize that...Ch. 15 - A block weighing 40.0 N is suspended from a spring...Ch. 15 - A 2.00-kg object attached to a spring moves...Ch. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Damping is negligible for a 0.150-kg object...Ch. 15 - The mass of the deuterium molecule (D2) is twice...Ch. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Review. This problem extends the reasoning of...Ch. 15 - A small ball of mass M is attached to the end of a...Ch. 15 - Review. A rock rests on a concrete sidewalk. An...Ch. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - To account for the walking speed of a bipedal or...Ch. 15 - Prob. 15.63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - A horizontal plank of mass 5.00 kg and length 2.00...Ch. 15 - A horizontal plank of mass m and length L is...Ch. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - A ball of mass m is connected to two rubber bands...Ch. 15 - Review. One end of a light spring with force...Ch. 15 - People who ride motorcycles and bicycles learn to...Ch. 15 - A simple pendulum with a length of 2.23 m and a...Ch. 15 - When a block of mass M, connected to the end of a...Ch. 15 - Review. A light balloon filled with helium of...Ch. 15 - Consider the damped oscillator illustrated in...Ch. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Your thumb squeaks on a plate you have just...Ch. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 15.82APCh. 15 - Two identical steel balls, each of mass 67.4 g,...Ch. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 15 - Review. Why is the following situation impassible?...Ch. 15 - A block of mass M is connected to a spring of mass...Ch. 15 - Review. A system consists of a spring with force...Ch. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardGive a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A. Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.arrow_forwardCalculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3arrow_forward
- A 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forwardA 4.5 cm tall object is placed 26 cm in front of a sphericalmirror. It is desired to produce a virtual image that is upright and 3.5 cm tall.(a) What type of mirror should be used, convex, or concave?(b) Where is the image located?(c) What is the focal length of the mirror?(d) What is the radius of curvature of the mirror?Prob. 25, page 861. Ans: (a) convex, (b) di= -20.2 cm, i.e. 20.2 cm behind the mirror,(c) f= -90.55 cm, (d) r= -181.1 cm.arrow_forwardA series RCL circuit contains an inductor with inductance L=3.32 mH, and a generator whose rms voltage is 11.2 V. At a resonant frequencyof 1.25 kHz the average power delivered to the circuit is 26.9 W.(a) Find the value of the capacitance.(b) Find the value of the resistance.(c) What is the power factor of this circuit?Ans: C=4.89 μF, R=4.66 Ω, 1.arrow_forward
- A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.70 km/s in the +x-direction experiences a force of 2.06×10−16 N in the +y-direction, and an electron moving at 4.40 km/s in the −z-direction experiences a force of 8.10×10−16 N in the +y-direction. What is the magnitude of the magnetic force on an electron moving in the −y-direction at 3.70 km/s ? What is the direction of this the magnetic force? (in the xz-plane)arrow_forwardA particle with a charge of −5.20 nC is moving in a uniform magnetic field of B =−( 1.22 T )k^. The magnetic force on the particle is measured to be F=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the x component of the velocity of the particle.arrow_forwardIs it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.arrow_forward
- Tutorial Exercise An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm. (a) Calculate the capacitance of the device. (b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor? Part 1 of 4 - Conceptualize Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells. Part 2 of 4 - Categorize We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.arrow_forwardI need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.arrow_forwardI need help running the simulation to get the result needed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY