Connect for Chemistry
13th Edition
ISBN: 9781260161854
Author: Raymond Chang, Jason Overby
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.77QP
Predict the pH (> 7, < 7, or ≈ 7) of aqueous solutions containing the following salts: (a) KBr, (b) Al(NO3)3, (c) BaCl2, (d) Bi(NO3)3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Propionic acid, HC3H5O2, has Ka= 1.34 x 10–5.
(a) What is the molar concentration of H3O+ in 0.15 M HC3H5O2 and the pH of the solution?
(b) What is the Kb value for the propionate ion, C3H5O2–?
(c) Calculate the pH of 0.15 M solution of sodium propionate, NaC3H5O2.
(d) Calculate the pH of solution that contains 0.12 M HC3H5O2 and 0.25 M NaC3H5O2.
Predict whether aqueous solutions of the following substances are acidic, basic, or neutral and write hydrolysis equations for the acidic and basic solutions.
(a) CsBr; (b) Al(NO3)3; (c) KCN; (d) CH3NH3Cl
Determine whether aqueous solutions of the following salts have a pH equal to, greater than, or less than 7; if pH > 7 or pH< 7, write a chemical equation to justify your answer. (a) NH4Br. (b) Na2CO3, (c) KF, (d) KBr, (e) AICI3, (f) Co(NO3)2.
Chapter 15 Solutions
Connect for Chemistry
Ch. 15.1 - Identify the conjugate acid-base pairs for the...Ch. 15.1 - Which of the following does not constitute a...Ch. 15.1 - Write the formulas of the conjugate acid and...Ch. 15.2 - Prob. 2PECh. 15.2 - Prob. 1RCFCh. 15.2 - Prob. 2RCFCh. 15.3 - Nitric acid (HNO3) is used in the production of...Ch. 15.3 - The pH of a certain orange juice is 3.33....Ch. 15.3 - Prob. 5PECh. 15.3 - Prob. 1RCF
Ch. 15.3 - Prob. 2RCFCh. 15.3 - Prob. 3RCFCh. 15.3 - Which is more acidic: a solution where [H+] =2.5 ...Ch. 15.4 - Prob. 6PECh. 15.4 - Predict whether the equilibrium constant for the...Ch. 15.4 - Prob. 1RCFCh. 15.4 - Prob. 2RCFCh. 15.4 - Prob. 3RCFCh. 15.4 - Prob. 4RCFCh. 15.5 - What is the pH of a 0.122 M monoprotic acid whose...Ch. 15.5 - The pH of a 0.060 M weak monoprotic acid is 3.44....Ch. 15.5 - Prob. 1RCFCh. 15.5 - Prob. 2RCFCh. 15.5 - The concentration of water is 55.5 M. Calculate...Ch. 15.6 - Calculate the pH of a 0.26 M methylamine solution...Ch. 15.6 - Prob. 1RCFCh. 15.6 - Consider the following three solutions of equal...Ch. 15.7 - An unknown organic acid has Ka = 5.6 106. What is...Ch. 15.7 - Consider the following two acids and their...Ch. 15.8 - Calculate the concentrations of H2C2O4, HC2O4,...Ch. 15.8 - Which of the diagrams (a)(c) represents a solution...Ch. 15.9 - Which of the following acids is weaker: HClO2 or...Ch. 15.9 - Arrange the following acids in order of increasing...Ch. 15.10 - Calculate the pH of a 0.24 M sodium formate...Ch. 15.10 - Prob. 14PECh. 15.10 - What is the pH of a 0.74 M solution of potassium...Ch. 15.10 - The diagrams shown here represent solutions of...Ch. 15.11 - Prob. 1RCFCh. 15.12 - Identify the Lewis acid and Lewis base in the...Ch. 15.12 - Prob. 1RCFCh. 15 - Define Brnsted acids and bases. Give an example of...Ch. 15 - Prob. 15.2QPCh. 15 - Classify each of the following species as a...Ch. 15 - Write the formulas of the conjugate bases of the...Ch. 15 - Identify the acid-base conjugate pairs in each of...Ch. 15 - Write the formula for the conjugate acid of each...Ch. 15 - Prob. 15.7QPCh. 15 - Write the formula for the conjugate base of each...Ch. 15 - What is the ion-product constant for water?Ch. 15 - Write an equation relating [H+] and [OH] in...Ch. 15 - Prob. 15.12QPCh. 15 - The pH of a solution is 6.7. From this statement...Ch. 15 - Define pOH. Write the equation relating pH and...Ch. 15 - Calculate the concentration of OH ions in a 1.4 ...Ch. 15 - Calculate the concentration of H+ ions in a 0.62 M...Ch. 15 - Calculate the pH of each of the following...Ch. 15 - Calculate the pH of each of the following...Ch. 15 - Calculate the hydrogen ion concentration in mol/L...Ch. 15 - Calculate the hydrogen ion concentration in mol/L...Ch. 15 - Complete the following table for a solution: pH...Ch. 15 - Fill in the word acidic, basic, or neutral for the...Ch. 15 - The pOH of a strong base solution is 1.88 at 25C....Ch. 15 - Calculate the number of moles of KOH in 5.50 mL of...Ch. 15 - How much NaOH (in grams) is needed to prepare 546...Ch. 15 - A solution is made by dissolving 18.4 g of HCl in...Ch. 15 - Prob. 15.27QPCh. 15 - Prob. 15.28QPCh. 15 - Prob. 15.29QPCh. 15 - Prob. 15.30QPCh. 15 - Which of the following diagrams best represents a...Ch. 15 - (1) Which of the following diagrams represents a...Ch. 15 - Classify each of the following species as a weak...Ch. 15 - Classify each of the following species as a weak...Ch. 15 - Which of the following statements is/are true for...Ch. 15 - Which of the following statements is/are true...Ch. 15 - Predict the direction that predominates in this...Ch. 15 - Predict whether the following reaction will...Ch. 15 - What does the ionization constant tell us about...Ch. 15 - List the factors on which the Ka of a weak acid...Ch. 15 - Prob. 15.41QPCh. 15 - Which of the following solutions has the highest...Ch. 15 - The Ka for benzoic acid is 6.5 105. Calculate the...Ch. 15 - A 0.0560-g quantity of acetic acid is dissolved in...Ch. 15 - The pH of an acid solution is 6.20. Calculate the...Ch. 15 - What is the original molarity of a solution of...Ch. 15 - Calculate the percent ionization of benzoic acid...Ch. 15 - Calculate the percent ionization of hydrofluoric...Ch. 15 - A 0.040 M solution of a monoprotic acid is 14...Ch. 15 - (a) Calculate the percent ionization of a 0.20 M...Ch. 15 - Use NH3 to illustrate what we mean by the strength...Ch. 15 - Which of the following has a higher pH: (a) 0.20 M...Ch. 15 - Calculate the pH of a 0.24 M solution of a weak...Ch. 15 - The diagrams here represent three different weak...Ch. 15 - Calculate the pH for each of the following...Ch. 15 - The pH of a 0.30 M solution of a weak base is...Ch. 15 - What is the original molarity of a solution of...Ch. 15 - In a 0.080 M NH3 solution, what percent of the NH3...Ch. 15 - Write the equation relating Ka for a weak acid and...Ch. 15 - From the relationship KaKb = Kw, what can you...Ch. 15 - Prob. 15.61QPCh. 15 - Write all the species (except water) that are...Ch. 15 - The first and second ionization constants of a...Ch. 15 - Compare the pH of a 0.040 M HCl solution with that...Ch. 15 - What are the concentrations of HSO4, SO42 and H+...Ch. 15 - Calculate the concentrations of H+, HCO3, and CO32...Ch. 15 - Prob. 15.67QPCh. 15 - Prob. 15.68QPCh. 15 - Predict the acid strengths of the following...Ch. 15 - Compare the strengths of the following pairs of...Ch. 15 - Which of the following is the stronger acid:...Ch. 15 - Prob. 15.72QPCh. 15 - Define salt hydrolysis. Categorize salts according...Ch. 15 - Explain why small, highly charged metal ions are...Ch. 15 - Al3+ is not a Brnsted acid but is Al(H2O)63+....Ch. 15 - Specify which of the following salts will undergo...Ch. 15 - Predict the pH ( 7, 7, or 7) of aqueous...Ch. 15 - Predict whether the following solutions are...Ch. 15 - A certain salt, MX (containing the M+ and X ions),...Ch. 15 - In a certain experiment a student finds that the...Ch. 15 - Calculate the pH of a 0.36 M CH3COONa solution.Ch. 15 - Calculate the pH of a 0.42 M NH4Cl solution.Ch. 15 - Prob. 15.83QPCh. 15 - Predict whether a solution containing the salt...Ch. 15 - Classify the following oxides as acidic, basic,...Ch. 15 - Write equations for the reactions between (a) CO2...Ch. 15 - Explain why metal oxides tend to be basic if the...Ch. 15 - Prob. 15.88QPCh. 15 - Zn(OH)2 is an amphoteric hydroxide. Write balanced...Ch. 15 - Al(OH)3 is an insoluble compound. It dissolves in...Ch. 15 - Prob. 15.91QPCh. 15 - In terms of orbitals and electron arrangements,...Ch. 15 - Classify each of the following species as a Lewis...Ch. 15 - Describe the following reaction in terms of the...Ch. 15 - Which would be considered a stronger Lewis acid:...Ch. 15 - All Brnsted acids are Lewis acids, but the reverse...Ch. 15 - Determine the concentration of a NaNO2 solution...Ch. 15 - Determine the concentration of a NH4Cl solution...Ch. 15 - Prob. 15.99QPCh. 15 - A typical reaction between an antacid and the...Ch. 15 - Prob. 15.101QPCh. 15 - The pH of a 0.0642 M solution of a monoprotic acid...Ch. 15 - Like water, liquid ammonia undergoes...Ch. 15 - HA and HB are both weak acids although HB is the...Ch. 15 - A solution contains a weak monoprotic acid HA and...Ch. 15 - The three common chromium oxides are CrO, Cr2O3,...Ch. 15 - Prob. 15.107QPCh. 15 - Use the data in Table 15.3 to calculate the...Ch. 15 - Prob. 15.109QPCh. 15 - Calculate the pH of a 0.20 M ammonium acetate...Ch. 15 - Novocaine, used as a local anesthetic by dentists,...Ch. 15 - Prob. 15.112QPCh. 15 - Prob. 15.113QPCh. 15 - The ion product of D2O is 1.35 1015 at 25C. (a)...Ch. 15 - Give an example of the following: (a) a weak acid...Ch. 15 - Prob. 15.116QPCh. 15 - Prob. 15.117QPCh. 15 - Prob. 15.118QPCh. 15 - When chlorine reacts with water, the resulting...Ch. 15 - When the concentration of a strong acid is not...Ch. 15 - Calculate the pH of a 2.00 M NH4CN solution.Ch. 15 - Calculate the concentrations of all species in a...Ch. 15 - Identify the Lewis acid and Lewis base that lead...Ch. 15 - Very concentrated NaOH solutions should not be...Ch. 15 - In the vapor phase, acetic acid molecules...Ch. 15 - Calculate the concentrations of all the species in...Ch. 15 - Prob. 15.127QPCh. 15 - Prob. 15.128QPCh. 15 - How many grams of NaCN would you need to dissolve...Ch. 15 - A solution of formic acid (HCOOH) has a pH of...Ch. 15 - Prob. 15.131QPCh. 15 - A 1.87-g sample of Mg reacts with 80.0 mL of a HCl...Ch. 15 - Prob. 15.133QPCh. 15 - Prob. 15.134QPCh. 15 - Prob. 15.135QPCh. 15 - Prob. 15.136QPCh. 15 - Prob. 15.137QPCh. 15 - Prob. 15.138QPCh. 15 - Prob. 15.139QPCh. 15 - The atmospheric sulfur dioxide (SO2) concentration...Ch. 15 - Calcium hypochlorite [Ca(OCl)2] is used as a...Ch. 15 - Prob. 15.142QPCh. 15 - About half of the hydrochloric acid produced...Ch. 15 - Prob. 15.144QPCh. 15 - Prob. 15.145QPCh. 15 - How many milliliters of a strong monoprotic acid...Ch. 15 - Prob. 15.147QPCh. 15 - Prob. 15.148QPCh. 15 - Prob. 15.149QPCh. 15 - A 1.294-g sample of a metal carbonate (MCO3) is...Ch. 15 - Prob. 15.151QPCh. 15 - Calculate the pH of a solution that is 1.00 M HCN...Ch. 15 - Prob. 15.153QPCh. 15 - Use the vant Hoff equation (see Problem 14.119.)...Ch. 15 - At 28C and 0.982 atm, gaseous compound HA has a...Ch. 15 - Prob. 15.156QPCh. 15 - Calculate the pH of a 0.20 M NaHCO3...Ch. 15 - Prob. 15.158QPCh. 15 - In this chapter, HCl, HBr, and HI are all listed...Ch. 15 - Use the data in Appendix 2 to calculate the for...Ch. 15 - Malonic acid [CH2(COOH)2] is a diprotic acid....Ch. 15 - Look up the contents of a Tums tablet. How many...Ch. 15 - Phosphorous acid, H3PO3(aq), is a diprotic acid...Ch. 15 - Chicken egg shells are composed primarily of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Weak base B has a pKb of 6.78 and weak acid HA has a pKa of 5.12. a Which is the stronger base, B or A? b Which is the stronger acid, HA or BH+? c Consider the following reaction: B(aq)+HA(aq)BH+(aq)+A(aq) Based on the information about the acid/base strengths for the species in this reaction, is this reaction favored to proceed more to the right or more to the left? Why? d An aqueous solution is made in which the concentration of weak base B is one half the concentration of its acidic salt, BHCl, where BH+ is the conjugate weak add of B. Calculate the pH of the solution. e An aqueous solution is made in which the concentration of weak acid HA twice the concentration of the sodium salt of the weak acid, NaA. Calculate the pH of the solution. f Assume the conjugate pairs B/BH+ and HA/A are capable of being used as color-based end point indicators in acidbase titrations, where B is the base form indicator and BH is the acid form indicator, and HA is the acid form indicator and A is the base form indicator. Select the indicator pair that would be best to use in each of the following titrations: (1) Titration of a strong acid with a strong base. (i) B/BH+ (ii) HA/A (2) Titration of a weak base with a strong acid. (i) B/BH+ (ii) HA/Aarrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forwardThe hydrogen phthalate ion, C8HsO4, is a weak acid with Ka = 3.91 106. C8H5O4(aq)+H2O(l)C8H4O42(aq)+H3O+(aq) What is the pH of a 0.050 M solution of potassium hydrogen phthalate. KC8H5O4? Note: To find the pH for a solution of the anion, we must take into account that the ion is amphiprotic. It can be shown that, for most cases of amphiprotic ions, the H3O+ concentration is [H3O+]=Ka1Ka2 For phthalic acid, C8H6O4 is Ka1 is 1.12 103, and Ka2 is 3.91 106.arrow_forward
- Write the Lewis structures of the reactants and product of each of the following equations, and identify the Lewis acid and the Lewis base in each:(a) CO2 + OH− ⟶ HCO3 −(b) B(OH)3 + OH− ⟶ B(OH)4 −(c) I− + I2 ⟶ I3 −(d) AlCl3 + Cl− ⟶ AlCl4 − (use Al-Cl single bonds)(e) O2− + SO3 ⟶ SO4 2−arrow_forwardIn the following reactions, identify the Lewis acid and the Lewis base. (a) AlCl3 + Cl¯ → AICI, (b) CH;COOH(aq) + NH3(aq) → CH;COO (aq) + NH (aq) (c) Co³* (aq) + 6F (aq) → [CoF, j*¯ (aq)arrow_forward. (a) Combine the following equations to construct an acid-base reaction equation, in the process drawing complete Lewis structures for both reactants and products, along with arrows to show the movement of nonbonded electrons. (b) Predict the overall direction of equilibrium in your equation and justify your answer. (c) Calculate the pK, values for the conjugate bases of the acids in your equation. NH t H20 H30® CHy Cita OH +Ho 1300 + CHzchb0s pka =15:9 + NH3 pkw =9.24arrow_forward
- 3. H̟CO, 2Ħ+HCO,¯ K, = 4.3 × 10-7 HCO, H* + Co, K, = 5.6 × 10-" The acid dissociation constants for the reactions above are given at 25°C. (a) What is the pH of a 0.050-molar solution of H,CO, at 25°C? (b) What is the concentration of CO,- ions in the solution in (a)? (c) How would the addition of each of the following substances affect the pH of the solution in (a)? (i) HCl (ii) NaHCO, (iii) NaOH (iv) NaClarrow_forwardThe CO2 we breathe reacts with water in our blood to form the weak acid H2CO3. What mole ratio of H2CO3/HCO3− is required to obtain a pH of 7.40, the pH of blood? (Assume that the Ka of H2CO3 is 4.4 ✕ 10−8.)arrow_forwardThree acids found in foods are lactic acid, LA, (in milk products), oxalic acid, OA, (in rhubarb), and malic acid, MA (in apples). The pKa values are LA =3.88, OA =1.23, and MA =3.40. Which list has the conjugate bases of these acids, lactate, oxalate, and malate, in order of decreasing strength? O lactate > malate > oxalate lactate > oxalate > malate malate > lactate > oxalate oxalate > malate > lactatearrow_forward
- (a) Using the expression Ka=[H+][A−]/[HA], explain how to determine which solution has the lower pH, 0.10MHF(aq) or 0.10MHC2H3O2(aq). Do not perform any numerical calculations. (b) Which solution has a higher percent ionization of the acid, a 0.10M solution of HC2H3O2(aq) or a 0.010M solution of HC2H3O2(aq) ? Justify your answer including the calculation of percent ionization for each solution.arrow_forwardThe major component of vinegar is acetic acid, CH3COOH. Its Ka is 1.8 × 10-5 . One student used 1.000 M NaOH to titrate 25.00 mL vinegar. At the end point, 21.82 mL NaOH was used. (a) What is the concentration of CH3COOH in vinegar? (b) What is the pH of the solution at the end point? (c) What indicator(s) the student should use in this titration? Explainarrow_forward6) What is the pH (aq., 25 oC) of 30.00 mL of a 0.250 M HBr solution that has had 15.00 mL of 0.125 M Ba(OH)2 solution added to it?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY