Review. A rock rests on a concrete sidewalk. An earthquake strikes, making the ground move vertically in simple harmonic motion with a constant frequency of 2.40 Hz and with gradually increasing amplitude. (a) With what amplitude does the ground vibrate when the rock begins to lose contact with the sidewalk? Another rock is sitting on the concrete bottom of a swimming pool full of water. The earthquake produces only vertical motion, so the water does not slosh from side to side. (b) Present a convincing argument that when the ground vibrates with the amplitude found in part (a), the submerged rock also barely loses contact with the floor of the swimming pool.
Review. A rock rests on a concrete sidewalk. An earthquake strikes, making the ground move vertically in simple harmonic motion with a constant frequency of 2.40 Hz and with gradually increasing amplitude. (a) With what amplitude does the ground vibrate when the rock begins to lose contact with the sidewalk? Another rock is sitting on the concrete bottom of a swimming pool full of water. The earthquake produces only vertical motion, so the water does not slosh from side to side. (b) Present a convincing argument that when the ground vibrates with the amplitude found in part (a), the submerged rock also barely loses contact with the floor of the swimming pool.
Solution Summary: The author analyzes the amplitude of vibrations of the earth when the rock begins to lose contact with the sidewalk.
Review. A rock rests on a concrete sidewalk. An earthquake strikes, making the ground move vertically in simple harmonic motion with a constant frequency of 2.40 Hz and with gradually increasing amplitude. (a) With what amplitude does the ground vibrate when the rock begins to lose contact with the sidewalk? Another rock is sitting on the concrete bottom of a swimming pool full of water. The earthquake produces only vertical motion, so the water does not slosh from side to side. (b) Present a convincing argument that when the ground vibrates with the amplitude found in part (a), the submerged rock also barely loses contact with the floor of the swimming pool.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cm
No chatgpt pls will upvote
13.87 ... Interplanetary Navigation. The most efficient way
to send a spacecraft from the earth to another planet is by using a
Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure
and destination planets are circular, the Hohmann transfer orbit is an
elliptical orbit whose perihelion and aphelion are tangent to the
orbits of the two planets. The rockets are fired briefly at the depar-
ture planet to put the spacecraft into the transfer orbit; the spacecraft
then coasts until it reaches the destination planet. The rockets are
then fired again to put the spacecraft into the same orbit about the
sun as the destination planet. (a) For a flight from earth to Mars, in
what direction must the rockets be fired at the earth and at Mars: in
the direction of motion, or opposite the direction of motion? What
about for a flight from Mars to the earth? (b) How long does a one-
way trip from the the earth to Mars take, between the firings of the
rockets? (c) To reach Mars from the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.