Interpretation:
Calculate the partial pressure and equilibrium constant of (Kp and Kc) given the statement of equilibrium process.
Concept Introduction:
Equilibrium constant: Concentration of the products to the respective molar concentration of reactants it is called equilibrium constant. If the K value is less than one the reaction will move to the left side and the K values is higher (or) greater than one the reaction will move to the right side of reaction.
Kp: The equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is unites number, although it relates the pressures.
Le Chatelier's Principle (Kp): The closed system is an increase in pressure, the equilibrium will shift towards the sides of the reaction with some moles of gas. The decrease in pressure the equilibrium will shift towards the side of the reaction with high moles of gas.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Atoms First V1
- For each reaction, an equilibrium constant at 298 K is given. Calculate G for each reaction. (a) Br2()+ H2(g)2HBr(g) KP = 4.4 1018 (b) H2O()H2O(g) KP = 3.17 102 (c) N2(g) +3H2(g)2NH3(g) Kc = 3.5 108arrow_forwardDescribe a nonchemical system that is in equilibrium, and explain how the principles of equilibrium apply to the system.arrow_forward5.11. Determine the numerical value of Q for the reaction conditions indicated.arrow_forward
- Indicate whether each statement below is true or false. If a statement is false, rewrite it to produce a closely related statement that is true. For a given reaction, the magnitude of the equilibrium constant is independent of temperature. If there is an increase in entropy and a decrease in enthalpy when reactants in their standard states are converted to products in their standard states, the equilibrium constant for the reaction must be negative. The equilibrium constant for the reverse of a reaction is the reciprocal of the equilibrium constant for the reaction itself. For the reaction H2O2(ℓ) ⇌ H2O(ℓ) + O2(g) the equilibrium constant is one half the magnitude of the equilibrium constant for the reaction 2H2O2(ℓ) ⇌ 2H2O(ℓ) + O2(g)arrow_forwardHydrogen gas and iodine gas react to form hydrogen iodide. If 0.500 mol H2 and 1.00 mol I2 are placed in a closed 10.0-L vessel, what is the mole fraction of HI in the mixture when equilibrium is reached at 205C? Use data from Appendix C and any reasonable approximations to obtain K.arrow_forwardConsider the reaction NH4+(aq) H+(aq)+NH3(aq) Use G f for NH3(aq) at 25C=26.7 kJ/mol and the appropriate tables to calculate (a) G at 25C (b) Ka at 25Carrow_forward
- 1. A process is spontaneous in the direction that moves it away from equilibrium toward equilibriumarrow_forwardPencil lead is almost pure graphite. Graphite is the stable elemental form of carbon at 25C and 1 atm. Diamond is an allotrope of graphite. Given diamond: H f =1.9 kJ/mol; S =2.4 J/mol k at what temperature are the two forms in equilibrium at 1 atm? C(graphite)C(diamond)arrow_forwardCalculate K for the formation of methyl alcohol at 100C: CO(g)+2H2(g)CH3OH(g) given that at equilibrium, the partial pressures of the gases are PCO=0.814 atm, PH2=0.274 atm, and PCH3OH=0.0512 atm.arrow_forward
- If wet silver carbonate is dried in a stream of hot air. the air must have a certain concentration level of carbon dioxide to prevent silver carbonate from decomposing by the reaction Ag2CO3(s)Ag2O(s)+CO2(g) H for this reaction is 79.14 kJ/mol in the temperature range of 25 to 125C. Given that the partial pressure of carbon dioxide in equilibrium with pure solid silver carbonate is 6.23 103 torr at 25C, calculate the partial pressure of CO2 necessary to prevent decomposition ofAg2CO3 at 110C. (Hint: Manipulate the equation in Exercise 79.)arrow_forwardFor the given chemical equilibrium, these data are determined experimentally: T K 350K 3.76102 450K 1.86101 Determine H for this reaction.arrow_forwardConsider a metal ion A2+ and its nitrate salt, In an experiment, 35.00 mL of a 0.217 M solution of A(NO3)2 is made to react with 25.00 mL of 0.195 M NaOH. A precipitate, A(OH)2, forms. Along with the precipitation, the temperature increases from 24.8C to 28.2C. What is H for the precipitation of A(OH)2? The following assumptions can be made. • The density of the solution is 1.00 g/mL. • Volumes are additive. • The specific heat of the solution is 4.18 J/g C.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning