Find the factor of safety

Answer to Problem 15.12P
The factor of safety
Explanation of Solution
Given information:
The slope with an inclination
The unit weight
The angle of friction
The cohesion
The height (H) of the retaining wall is 45 ft.
Calculation:
Trial 1:
Consider the factor of safety as 2.
Determine the cohesion
Substitute
Determine the angle
Substitute
Determine height of the slope that will have a factor of safety of 2.0 against sliding using the formula.
Substitute
The height of the retaining wall is not equal to the calculated height of the wall.
Hence, the assumption is incorrect.
Trial 2:
Consider the factor of safety as 2.5.
Determine the cohesion
Substitute
Determine the angle
Substitute
Determine height of the slope that will have a factor of safety of 2.0 against sliding using the formula.
Substitute
The height of the retaining wall is not equal to the calculated height of the wall.
Hence, the assumption is incorrect.
Trial 3:
Consider the factor of safety as 2.25.
Determine the cohesion
Substitute
Determine the angle
Substitute
Determine height of the slope that will have a factor of safety of 2.25 against sliding using the formula.
Substitute
The height of the retaining wall is equal to the calculated height of the wall.
Thus, the factor of safety with respect to sliding is
Want to see more full solutions like this?
Chapter 15 Solutions
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, 9th Edition, [Instant Access], 2 terms (12 months)
- 1) Determine if the existing sedimentation basins are sufficient to accommodate the projected future capacity. If not, design upgrades to the sedimentation basins. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for 110,000 residents C) If not, design upgrades to the sedimentation basins. 2) Specify the design flow rate, the type of basin (circular vs. rectangular) 3) Specify the basin dimensions (length, width, water depth or diameter and water depth). 4) Specify the dimensions of the launders (if applicable) and the length of the weir.arrow_forwardThe capacity of a freeway lane with free-flow speed of 70mph and jam density average vehicle spacing 40ft assuming greenshields’s model applies. Please explain step by step and show formulaarrow_forward3. For problems given below, determine all the reaction forces and plot force diagrams for normal forces (N), shear force (T), and moments (M). 150 lb/ft 10 ft C B 2 ft 2 ft -4 ft D 250 lb/ft 50 lb/ft B 150 lb-ft 150 lb-ft -20 ft 10 ft -20 ft 200 lb-ftarrow_forward
- Please explain step by step and show all the formula usedarrow_forwardBy using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two- way slab shown in figure under a uniformly distributed load. Using moment method 5 2 7.0m 1 A I c.g. * B c.g 5 2 B c. g. ㄨˋ A A 2.5 2.0 2.5 5.0marrow_forwardPlease explain step by step and include any formula usedarrow_forward
- Explain step by step, show what formulas usedarrow_forward2 1d/T₁₂ = 1/2 n First impulse E ("œw / ])÷(1) '7 J-1 -1- -2+ 0 0.5 1 1.5 2arrow_forwardBars AD and CE (E=105 GPa, a = 20.9×10-6 °C) support a rigid bar ABC carrying a linearly increasing distributed load as shown. The temperature of Bar CE was then raised by 40°C while the temperature of Bar AD remained unchanged. If Bar AD has a cross-sectional area of 200 mm² while CE has 150 mm², determine the following: the normal force in bar AD, the normal force in bar CE, and the vertical displacement at Point A. D 0.4 m -0.8 m A -0.4 m- B -0.8 m- E 0.8 m C 18 kN/marrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



