Consider the following condition and find out the direction of the reaction (1) Q < K (2) Q > K (3) Q = K Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation. Equilibrium constant K c is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients. Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients. aA + bB→cC + dD K c = [ C ] c [ D ] d [ A ] a [ B ] b , equilibrium Q = [ C ] c [ D ] d [ A ] a [ B ] b To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.
Consider the following condition and find out the direction of the reaction (1) Q < K (2) Q > K (3) Q = K Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation. Equilibrium constant K c is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients. Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients. aA + bB→cC + dD K c = [ C ] c [ D ] d [ A ] a [ B ] b , equilibrium Q = [ C ] c [ D ] d [ A ] a [ B ] b To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.
Solution Summary: The author explains the direction of reaction shift at different values of the reaction quotient and the equilibrium constant.
Definition Definition Number that is expressed before molecules, ions, and atoms such that it balances out the number of components present on either section of the equation in a chemical reaction. Stoichiometric coefficients can be a fraction or a whole number and are useful in determining the mole ratio among the reactants and products. In any equalized chemical equation, the number of components on either side of the equation will be the same.
Chapter 15, Problem 14E
Interpretation Introduction
Interpretation: Consider the following condition and find out the direction of the reaction
(1) Q < K
(2) Q > K
(3) Q = K
Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation.
Equilibrium constant Kc is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients.
Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients.
aA + bB→cC + dD
, equilibrium
To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.
need help not sure what am doing wrong step by step please answer is 971A
During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration.
What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Influence of salt concentrations on electrostatic interactions 2
Answer is 2.17A why not sure step by step please
What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).